1	FOOD AND DRUG ADMINISTRATION
2	CENTER FOR DRUG EVALUATION AND RESEARCH
3	
4	
5	
6	CARDIOVASCULAR AND RENAL DRUGS ADVISORY COMMITTEE
7	
8	THURSDAY, JULY 29, 2010
9	8:00 a.m. to 4:15 p.m.
10	
11	
12	
13	Marriott Conference Centers, University of Maryland
14	University College Inn and Conference Center
15	3501 University Boulevard East
16	Adelphi, MD
17	
18	
19	
20	
21	
22	

1	Cardiovascular and Renal Drugs Advisory Committee
2	Members (Voting)
3	Henry R. Black, M.D.
4	Clinical Professor of Internal Medicine
5	Department of Internal Medicine
6	New York University School of Medicine
7	New York, New York
8	
9	Jonathan L. Halperin, M.D.
10	Professor of Medicine (Cardiology)
11	Mount Sinai School of Medicine
12	Director, Cardiology Clinical Services
13	The Zena and Michael A. Wiener Cardiovascular
14	Institute and the Marie-Josée and Henry R. Kravis
15	Center for Cardiovascular Health
16	Mount Sinai Medical Center
17	New York, New York
18	
19	
20	

- 1 Sanjay Kaul, M.D. (Acting Chair)
- 2 Director, Fellowship Training Program in
- 3 Cardiovascular Diseases
- 4 Cedars-Sinai Heart Institute
- 5 Professor, David Geffen School of Medicine at
- 6 UCLA Division of Cardiology
- 7 Cedar Sinai Medical Center
- 8 Los Angeles, California

- 10 Mori J. Krantz, M.D., F.A.C.C.
- 11 Associate Professor
- 12 University of Colorado/Cardiology
- 13 Denver Health
- 14 Director, CV Prevention, & ECG Core Lab
- 15 Colorado Prevention Center
- 16 Denver, Colorado

- 18 Darren K. McGuire, M.D., M.H.Sc.
- 19 Associate Professor
- 20 The University of Texas Southwestern Medical
- 21 Center at Dallas
- 22 Dallas, Texas

- 1 James D. Neaton, Ph.D.
- 2 Professor of Biostatistics
- 3 Division of Biostatistics
- 4 Coordinating Centers for Biometric Research
- 5 University of Minnesota School of Public Health
- 6 Minneapolis, Minnesota

- 8 Industry Representative (Non-Voting)
- 9 Enrico P. Veltri, M.D. (Acting Industry
- 10 Representative)
- 11 Industry Representative
- 12 Pharmaceutical Industry Consultant
- 13 Princeton, New Jersey

14

- 15 **Temporary Voting Members**
- 16 Allan Coukell, BscPharm. (Acting Consumer
- 17 Representative)
- 18 Director, The Pew Prescription Project
- 19 Pew Health Group
- 20 The Pew Charitable Trusts
- 21 Washington, D.C.

- 1 Ralph B. D'Agostino, Sr., Ph.D.
- 2 Chair, Mathematics and Statistics Department
- 3 Professor of Mathematics/Statistics and Public Health
- 4 Boston University
- 5 Boston, Massachusetts

- 7 Steven M. Kawut, M.D., M.S.
- 8 Associate Professor of Medicine and Epidemiology
- 9 Penn Cardiovascular Institute
- 10 Center for Clinical Epidemiology and Biostatistics
- 11 Pulmonary, Allergy, and Critical Care Division
- 12 Department of Medicine
- 13 University of Pennsylvania School of Medicine
- 14 Philadelphia, Pennsylvania

15

- 16 John H. Newman, M.D.
- 17 Elsa S. Hanigan Professor of Pulmonary Medicine
- 18 Vanderbilt Medical Center
- 19 Nashville, Tennessee

20

21

Τ	Stuart Rich, M.D.
2	Professor of Medicine University of Chicago
3	Section of Cardiology Center for Pulmonary
4	Hypertension
5	Chicago, Illinois
6	
7	Geoffrey L. Rosenthal, M.D., Ph.D.
8	Director, Pediatric and Congenital Heart Program
9	Executive Director, Critical Care Services
10	University of Maryland Hospital for Children
11	Baltimore, Maryland
12	
13	Jürgen Venitz, MD, Ph.D.
14	Associate Professor, Department of Pharmaceutics
15	School of Pharmacy
16	Medical College of Virginia Campus of
17	Virginia Commonwealth University
18	Richmond, Virginia
19	
20	
21	

1	FDA (Non-Voting)
2	Robert Temple, M.D.
3	Director of the Office of Medical Policy
4	Director, Office of Drug Evaluation I
5	CDER
6	
7	Norman Stockbridge, M.D.
8	Director, Division of Cardiovascular and
9	Renal Drug Products
10	CDER
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

1	I N D E X	
2	AGENDA ITEM	PAGE
3	Call to Order and Introduction of Committee	
4	Sanjay Kaul, M.D.	10
5	Conflict of Interest Statement	
6	Elaine Ferguson	13
7	Opening Remarks	
8	Norman Stockbridge, M.D.	17
9	FDA Presentations	
10	Elizabeth Durmowicz, M.D.	20
11	Norman Stockbridge, M.D., Ph.D.	30
12	Questions from the Committee	35
13	Robyn Barst, M.D.	37
14	Questions from the Committee	56
15	Satjit Brar, Pharm.D., Ph.D.	80
16	Questions from the Committee	96
17	Sponsor Presentations	
18	Nancy McKay	109
19	Colin Ewen, Ph.D.	115
20	Lutz Harnisch, M.D.	135
21	Colin Ewen, Ph.D.	145
22	Ouestions from the Committee	147

1	I N D E X (continued)	
2	AGENDA ITEM	PAGE
3	Open Public Hearing	195
4	Committee Discussions and Questions	205
5	to the Committee	
6	Questions from the Committee	237
7	Adjourn	340
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		

- 2 (8:00 a.m.)
- 3 DR. KAUL: Good morning, welcome. I'd like
- 4 to call the meeting to order. My name is Sanjay Kaul.
- 5 I am the acting chair for the Cardio-Renal Drug
- 6 Advisory Committee today. I'm a cardiologist at
- 7 Cedars-Sinai Heart Institute in Los Angeles.
- 8 I'd like to introduce the committee today,
- 9 starting from the FDA end.
- DR. STOCKBRIDGE: Good morning. My name is
- 11 Norman Stockbridge. I'm the Director of the Division
- 12 of Cardiovascular and Renal Products at FDA.
- DR. VENITZ: Jurgen Venitz, clinical
- 14 pharmacologist, Virginia Commonwealth University.
- DR. NEWMAN: I'm John Newman, pulmonary and
- 16 critical care medicine at Vanderbilt University.
- DR. HALPERIN: Jonathan Halperin, a
- 18 cardiologist at the Mount Sinai Medical Center in New
- 19 York.
- DR. BLACK: I'm Henry Black. I'm a
- 21 preventative cardiologist at New York University and a
- 22 systemic hypertension specialist.

- DR. RICH: Stuart Rich, cardiologist,
- 2 University of Chicago.
- 3 DR. NEATON: Jim Neaton, biostatistician,
- 4 University of Minnesota.
- 5 MS. FERGUSON: Elaine Ferguson, Designated
- 6 Federal Official.
- 7 DR. KRANTZ: Good morning. Mori Krantz,
- 8 University of Colorado in Denver.
- 9 MR. COUKELL: Good morning. Allan Coukell,
- 10 I'm a pharmacist at the Pew Charitable Trusts and the
- 11 acting consumer representative.
- DR. D'AGOSTINO: Ralph D'Agostino,
- 13 biostatistician from Boston University and the
- 14 Framingham Study.
- DR. MCGUIRE: Darren McGuire, general
- 16 cardiology, University of Texas Southwestern in
- 17 Dallas.
- DR. KAWUT: Steve Kawut, I'm a pulmonologist
- 19 at the University of Pennsylvania.
- DR. ROSENTHAL: Good morning. I'm Geoff
- 21 Rosenthal. I'm a pediatric cardiologist at the
- 22 University of Maryland, and I'm a member of the

- 1 Pediatric Advisory Committee at the FDA.
- DR. VELTRI: Ric Veltri, cardiologist,
- 3 industry representative.
- 4 DR. KAUL: Thank you.
- 5 For topics such as those being discussed at
- 6 today's meeting, there are often a variety of
- 7 opinions, some of which are quite strongly held. Our
- 8 goal is that today's meeting will be a fair and open
- 9 forum for discussion of these issues and that
- 10 individuals can express their views without
- 11 interruption. Thus, as a gentle reminder, individuals
- 12 will be allowed to speak into the record only if
- 13 recognized by the chair. We look forward to a
- 14 productive meeting.
- In the spirit of the Federal Advisory
- 16 Committee Act and the Government in the Sunshine Act,
- 17 we ask that the advisory committee members take care
- 18 that their conversations about the topic at hand take
- 19 place in the open forum of the meeting.
- 20 We are aware that members of the media are
- 21 anxious to speak with the FDA about these proceedings.
- 22 However, FDA will refrain from discussing the details

- 1 of this meeting with the media until its conclusions.
- 2 Also, the committee is reminded to please refrain from
- 3 discussing the meeting topic during breaks or lunch.
- Thank you. At this point, I'd like to call
- 5 upon Elaine Ferguson to deliver the conflict of
- 6 interest statement. Elaine?
- 7 MS. FERGUSON: The Food and Drug
- 8 Administration, FDA, is convening today's meeting of
- 9 the Cardiovascular and Renal Drug Advisory Committee
- 10 under the authority of the Federal Advisory Committee
- 11 Act of 1972. With the exception of the industry
- 12 representative, all members and temporary voting
- 13 members of the committee are special government
- 14 employees, SGEs, or regular federal employees from
- 15 other agencies and are subject to federal conflict of
- 16 interest laws and regulations.
- 17 The following information on the status of
- 18 the committee's compliance with federal ethics and
- 19 conflict of interest laws covered by, but not limited
- 20 to, those found at 18 U.S.C. Section 208 and Section
- 21 712 of the Federal Food, Drug, and Cosmetic Act, FD&C
- 22 Act, is being provided to participants in today's

- 1 meeting and to the public. FDA has determined that
- 2 members and temporary voting members are in compliance
- 3 with federal ethics and conflict of interest laws.
- 4 Under 18 U.S.C. Section 208, Congress has
- 5 authorized FDA to grant waivers to special government
- 6 employees and regular federal employees who have
- 7 potential financial conflicts when it is determined
- 8 that the agency's need for a particular individual's
- 9 services outweighs his or her potential financial
- 10 conflict of interest. Under Section 712 of the FD&C
- 11 Act, Congress has authorized FDA to grant waivers to
- 12 special government employees and regular federal
- 13 employees with potential financial conflicts when
- 14 necessary to afford the committee essential expertise.
- Related to discussions of today's meeting,
- 16 members and temporary voting members have been
- 17 screened for potential financial conflicts of
- 18 interests of their own, as well as those imputed to
- 19 them, including those of their spouses or minor
- 20 children and, for purposes of 18 U.S.C. Section 208,
- 21 their employers. These interests may include
- 22 investments, consulting, expert witness testimony,

- 1 contracts, grants, CRADAs, teaching, speaking,
- 2 writing, patents and royalties, and primary
- 3 employment.
- 4 Today's agenda involves Revatio, sildenafil,
- 5 manufactured by Pfizer for the treatment of pediatric
- 6 pulmonary arterial hypertension and whether to amend
- 7 the clinical trial section of the written request
- 8 issued by FDA to Pfizer to include assessment of
- 9 hemodynamic, i.e., blood pressure and blood flow
- 10 endpoint. An area of particular interest will be what
- 11 the appropriate study endpoint should be in patients
- 12 with pediatric pulmonary arterial hypertension, PAH,
- 13 unable to perform exercise testing.
- 14 The discussion will help the agency
- 15 determine what studies to request for products
- 16 intended to treat pediatric PAH. This is a particular
- 17 matters meeting during which specific matters related
- 18 to Pfizer's Revatio, sildenafil, will be discussed.
- To ensure transparency, we encourage all
- 20 standing committee members and temporary voting
- 21 members to disclose any public statements that they
- 22 have made concerning the products at issue.

1 With respect to the FDA's invited industry

- 2 representative, we would like to disclose that
- 3 Dr. Enrico Veltri is participating in this meeting as
- 4 a nonvoting industry representative acting on behalf
- 5 of regulated industry. Dr. Veltri's role at this
- 6 meeting is to represent industry in general and not
- 7 any particular company. Dr. Veltri is an independent
- 8 pharmaceutical industry consultant.
- 9 We would like to remind members and
- 10 temporary voting members that if the discussions
- 11 involve any other products or firms not already on the
- 12 agenda for which a FDA participant has a personal or
- imputed financial interest, the participants need to
- 14 exclude themselves from such involvement and their
- 15 exclusion will be noted for the record. FDA
- 16 encourages other participants to advise the committee
- 17 of any financial relationships that they may have with
- 18 the firm at issue.
- 19 At this time, I'd like to recognize the FDA
- 20 press representative, Karen Mahoney. Thank you.
- 21 I would like to also inform the committee
- 22 that the patient representative e-mailed us on Monday

1 informing that she will not be able to attend today.

- 2 Thank you.
- 3 DR. KAUL: Thank you, Elaine.
- 4 At this point, I will call upon
- 5 Dr. Stockbridge to deliver his opening remarks and
- 6 provide us with some context behind this meeting and
- 7 highlight the core issues that the committee is
- 8 charged with to adjudicate today.
- 9 Dr. Stockbridge?
- DR. STOCKBRIDGE: Good morning and thank you
- 11 to the committee for your work today. As Plato once
- 12 said, "And now for something completely different."
- There are a number of things that are quite
- 14 different about this meeting than possibly any you've
- 15 ever attended, certainly any other cardio-renal
- 16 meeting. For one thing, there's no approval decision
- 17 at stake today. This is, in part, because the data
- 18 that relate to a particular development program have
- 19 not, in fact, been reviewed by FDA at this point.
- 20 So the question that you're going to have to
- 21 address with respect to those data is whether or not
- 22 they appear in a certain formal sense to be useful.

- 1 There is a proposal before you to reinterpret the data
- 2 that the sponsor has collected. That in itself isn't
- 3 particularly unusual.
- 4 What's unusual in this case is that the data
- 5 analyses and supporting material that support this
- 6 reinterpretation of the data come from the FDA, not
- 7 from the sponsor. It's not from the sponsor's
- 8 development program. That aspect of this has led to
- 9 an unusual degree of cooperation and coordination of
- 10 the presentations that you're going to hear in this
- 11 meeting.
- 12 There's an expectation that you'll be
- 13 probably fairly unfamiliar with the regulatory context
- 14 before you, so we're going to try to provide for you
- 15 today a coordinated presentation that will provide you
- 16 with the background that you need.
- 17 So the first speaker is going to be
- 18 Dr. Elizabeth Durmowicz from our pediatric team, who's
- 19 going to describe the pediatric written request
- 20 process for you. I will then provide a very brief
- 21 discussion of the sildenafil pediatric written request
- 22 and certain key aspects of it.

- 1 Dr. Robyn Barst, on behalf of the sponsor,
- 2 will then describe the relationship between pulmonary
- 3 arterial hypertension in adults and children. Then
- 4 FDA's Dr. Satjit Brar will describe the agency's work
- 5 to evaluate a surrogate endpoint that's being proposed
- 6 by us to bridge a drug from an approved use in adults
- 7 to an indication in children. And then finally, the
- 8 Pfizer team will describe their data from their
- 9 development program.
- 10 Despite the degree of cooperation that
- 11 appears in these presentations, there's a serious
- 12 matter before you and reasonable basis by which you
- 13 might disagree with what's being contemplated by the
- 14 agency. And the issues that you'll have to deal with
- 15 are, one, for the purpose that's being outlined, do
- 16 you think we have a validated surrogate here; and then
- 17 second, even if you do think that's true, do you
- 18 believe it's proper and reasonable for us to alter
- 19 Pfizer's pediatric written request to incorporate that
- 20 surrogate?
- 21 So with that as introduction, I think we're
- 22 ready to start.

```
DR. KAUL: Thank you, Dr. Stockbridge.
```

- We have Dr. Durmowicz who is going to start
- 3 with the FDA presentations. And while she's walking
- 4 over to the podium, Dr. Temple, would you like to
- 5 introduce yourself?
- DR. TEMPLE: Good morning, Bob Temple,
- 7 director, ODE I.
- 8 DR. DURMOWICZ: Good morning. I have the
- 9 pleasure to talk with you today a little bit about
- 10 pediatric drug development and the Best
- 11 Pharmaceuticals for Children Act, or BPCA.
- 12 Traditionally, drugs were not studied in the pediatric
- 13 population, and, hence, the number of medicinal
- 14 products labeled in pediatric patients is limited.
- 15 Because of this, legislation has been passed to both
- 16 require and request studies in the pediatric
- 17 population.
- 18 Today I will briefly review the pediatric
- 19 legislation, with a focus on the Best Pharmaceuticals
- 20 Act for Children, or BPCA. It's important to remember
- 21 that pediatric drug development happens in the context
- 22 of overall drug development, and, therefore, studies

- 1 performed in the pediatric population often rely on
- 2 studies previously performed in the adult population,
- 3 the pediatric population or both. Therefore, I will
- 4 review FDA's approach to extrapolation of data, which
- 5 is consistent with International Conference on
- 6 Harmonization's guidelines for clinical investigations
- 7 in pediatric patients, and I'll also review the
- 8 written request process.
- 9 The history in acknowledging the need for
- 10 pediatric information and labeling began in 1994 with
- 11 the pediatric labeling rule. In 1997, the Food and
- 12 Drug Administration Modernization Act, or FDAMA,
- 13 passed and included an incentive program for the study
- 14 of medications in children. These exclusivity
- 15 provisions were renewed under the Best Pharmaceuticals
- 16 for Children Act in 2002.
- 17 In 1998, the FDA published the pediatric
- 18 rule requiring studies in the pediatric population for
- 19 certain products. And in 2003, these requirements
- 20 were codified under the Pediatric Research Equity Act,
- 21 or PREA. Both BPCA and PREA were reauthorized in the
- 22 Food and Drug Administration Amendments Act, or FDAAA,

- 1 in 2007.
- 2 Under BPCA, a written request can be issued
- 3 for studies in the pediatric populations, and
- 4 companies can perform the studies to obtain marketing
- 5 exclusivity. I will first talk a little bit about the
- 6 pediatric written request and then discuss the process
- 7 for obtaining pediatric exclusivity under BPCA.
- 8 The written request is a legal document
- 9 requesting studies that are intended to obtain
- 10 sufficient information on the use of a medication in
- 11 the pediatric population. The written request
- 12 specifies the indication or indications to be studied;
- 13 the population, including the age range of the
- 14 patients to be studied; the types of studies; the
- 15 safety parameters that must be monitored; the plan for
- 16 analysis; and the time frame for submitting study
- 17 reports. A written request must be reviewed by an
- 18 internal pediatric review committee before being
- 19 issued.
- When designing studies for a written
- 21 request, available information is assessed to
- 22 determine what kind of studies will be needed.

1 Extrapolation of efficacy is allowed if the course of

- 2 the disease and the response to therapy are
- 3 sufficiently similar in adults and pediatric patients.
- 4 There are reasons why it is important to
- 5 extrapolate when possible. Research in pediatric
- 6 patients carries additional responsibilities, and just
- 7 because larger studies can be performed does not mean
- 8 they should be performed. Pediatric patients are
- 9 considered a vulnerable population, and special
- 10 measures to protect the study patients are needed.
- 11 Research should involve the fewest number of patients
- 12 needed to answer the question at hand, and pediatric
- 13 trials should be designed with efficiency in mind.
- 14 Extrapolation of efficacy still requires
- 15 supportive data in the pediatric population. However,
- 16 this approach may reduce the number and complexity of
- 17 pediatric trials necessary for pediatric drug
- 18 development.
- 19 I realize that this algorithm may not
- 20 project well, and we'll walk through each of these
- 21 steps separately in the forthcoming slides. But this
- 22 is a decision tree that is used by FDA as a framework

- 1 to help determine if extrapolation may be used in
- 2 pediatric studies and if so, what type of studies
- 3 would be required to support the extrapolation of
- 4 efficacy.
- 5 So now, to walk through the algorithm, if
- 6 there is not a scientific determination that the
- 7 course of the disease and response to treatment are
- 8 the same in adults and pediatric patients, then
- 9 efficacy cannot be extrapolated and full dosing,
- 10 safety and efficacy data will be required in the
- 11 pediatric population.
- 12 If it is determined that the disease and
- 13 responsive treatment are similar in adult and
- 14 pediatric patients and there is likely to be a similar
- 15 concentration response, then an indication can be
- 16 supported by efficacy extrapolated from adults, a
- 17 pharmacokinetic study in pediatric patients to match
- 18 adult exposure, and additional pediatric safety
- 19 information would be required.
- In the scenario where the disease and the
- 21 response to treatment are similar, but one cannot make
- 22 a determination that there is likely to be a similar

- 1 concentration response relationship and no
- 2 pharmacodynamic measures exist, then full studies are
- 3 needed to establish dosing, safety and effectiveness
- 4 in pediatric patients.
- 5 In the last scenario, where the condition
- 6 and the response to treatment is similar enough and
- 7 one cannot assume that there will be a direct
- 8 concentration response that is the same in adults and
- 9 children, but a pharmacodynamic measurement that can
- 10 predict efficacy in pediatric patients does exist,
- 11 then efficacy can be extrapolated from adults and a
- 12 PK/PD study to establish the concentration response in
- 13 pediatric patients and a safety study can support the
- 14 indication in the pediatric population, since
- 15 situations have occurred when a concentration response
- or a PD response had to be established before
- 17 extrapolation of efficacy could be supported.
- 18 Over the last decade, FDA has made extensive
- 19 use of the principle of extrapolating efficacy when
- 20 issuing written requests for pediatric studies. A
- 21 number of approaches have been used, and these
- 22 approaches have evolved differently in different

- 1 therapeutic areas and they do continue to evolve.
- 2 This table provides examples where efficacy
- 3 was, in part, extrapolated from the adult clinical
- 4 trials and studies using endpoints other than those
- 5 used in adult patients supported the pediatric
- 6 indication.
- 7 For sotalol, PK studies were performed and
- 8 exposure response was established based on beta
- 9 blockade and QTC and safety was assessed. For
- 10 argatroban, a direct thrombin anticoagulant, event
- 11 rates were assessed in adults and active partial
- 12 thromboplastin time was used as a study endpoint in
- 13 studies of heparin-induced thrombocytopenia.
- 14 For bivalirudin, a PK study with a PD
- 15 endpoint activated clotting time was used. With the
- 16 example of loratadine, safety and effectiveness was
- 17 established in adults and pediatric patients 12 years
- 18 of age and older, and PK data and safety studies
- 19 supported extrapolation of efficacy to younger
- 20 patients. For the anti-retrovirals, these have been
- 21 studied in the pediatric population using PK/PD and
- 22 reduced viral load.

1 So now that we've reviewed some of the ways

- 2 that the necessary studies to support pediatric
- 3 labeling are determined, I'll review the process for
- 4 obtaining pediatric exclusivity. Once the study in
- 5 response to a written request are submitted to the
- 6 agency, the pediatric exclusivity board determines if
- 7 the studies performed were those that were requested
- 8 in the written request and if the studies were
- 9 conducted using good scientific principles. If so,
- 10 then six months of marketing exclusivity is granted,
- 11 and the marketing of a generic drug product is blocked
- 12 for six months.
- The exclusivity is granted to the drug
- 14 moiety and is not indication specific. Therefore, for
- 15 example, if sildenafil is granted pediatric
- 16 exclusivity based on a written request to study
- 17 pediatric pulmonary arterial hypertension, the
- 18 exclusivity would apply to both Revatio tablets and
- 19 injection, as well as Viagra.
- Of note, the financial incentive is usually
- 21 not dependent on obtaining a pediatric indication, but
- 22 rather, it comes from protection of sales in the adult

1 market. In addition, exclusivity is not determined by

- 2 the outcome of the trials. It only matters that the
- 3 sponsor has fairly responded to the terms of the
- 4 written request, and thus it is important that FDA ask
- 5 for sufficient information in the written request.
- 6 Information from the studies conducted under a written
- 7 request must be incorporated into labeling.
- 8 Written requests are frequently revised, and
- 9 the language in all written requests advises the
- 10 sponsor that if they want a revision, to contact the
- 11 agency to discuss the proposed changes. Revisions are
- 12 common as the development program progresses, and
- 13 there are currently 34 written requests posted on the
- 14 FDA website. And these are written requests where an
- 15 exclusivity determination was made since the passage
- of FDAAA in September of 2007.
- Of those 34 written requests, 25 have been
- 18 revised. As you can see, changes are often made close
- 19 to the due date of the studies, and the changes have
- 20 ranged from changes that are considered more major,
- 21 like changes in the development plan, to more minor
- 22 changes, such as the due date of the studies.

```
1 So why should we revise a written request
```

- 2 after it is issued or why would we? Essentially, we
- 3 must allow for change to accommodate for new
- 4 knowledge. For example, the sponsor may need
- 5 additional time to complete the studies. This could
- 6 happen if recruitment was lower or slower than
- 7 expected or perhaps an interim analysis of the data
- 8 identified the need to recruit and enroll more
- 9 patients. Sometimes certain pediatric populations
- 10 cannot be recruited, and they are removed from the
- 11 study.
- 12 In addition, medical knowledge may change,
- 13 and the practice of medicine may change. When the
- 14 written request for the proton pump inhibitors were
- 15 first developed, the resolution of apnea, of
- 16 prematurity was the primary endpoint in newborns.
- 17 However, studies were subsequently published that
- 18 acknowledged that even though reflux and apnea often
- 19 occur in the same patient population, that reflux was
- 20 not the cause of apnea and the endpoint was changed.
- 21 So in summary, we've discussed the written
- 22 request process under BPCA and the concept of

- 1 extrapolation. And I will summarize by saying that
- 2 BPCA is intended to encourage studies in the pediatric
- 3 population with the goal of providing evidence-based
- 4 use of medication for children. The pediatric
- 5 development program is part of the overall development
- 6 program, and thus is not required to stand alone.
- 7 Data should be leveraged to minimize pediatric
- 8 exposure to study. However, that being said, the data
- 9 must be sufficient to adequately support the
- 10 indication in the pediatric population.
- DR. KAUL: Thank you, Dr. Durmowicz.
- 12 Dr. Stockbridge?
- DR. STOCKBRIDGE: I'm just going to give you
- 14 a few slides to take you through the evolution in the
- 15 sildenafil written request thus far. As Dr. Durmowicz
- 16 points out, the intent here is to ensure that a
- 17 development program provides useful information that
- 18 supports something intelligible in the label.
- 19 It might be that it's okay to use it in
- 20 children. It might be that it's probably not a good
- 21 idea to use it in children. But either of those is
- 22 worth what is being offered to the sponsor in terms of

- 1 their written request so long as the result is
- 2 interpretable.
- 3 So one aspect of that is ensuring that a
- 4 successful trial is interpretable, and what you need
- 5 in order to decide that has to do with what you know
- 6 externally and how closely related you think the
- 7 external data are to the disease in children. Thus if
- 8 there's no corresponding indication in children, then
- 9 the agency has to think that there's a reasonable
- 10 likelihood for success.
- But the development program in children has
- 12 to carry the full regulatory burden of establishing
- 13 the effectiveness there. If there is a similar
- 14 indication in adults, then you can borrow some
- 15 strength from that, depending on how confident you are
- 16 in that. That can range from, as Dr. Durmowicz says,
- 17 PK data only in children all the way up to another
- 18 trial.
- 19 The other aspect is ensuring that a failure,
- 20 if that's what happens, is informative. We do that by
- 21 establishing what we think is a minimally important
- 22 effect size in children that we want to make sure that

- 1 the trial is capable of excluding if the true effect
- 2 ends up being zero. And so the written requests
- 3 generally have some clause that establishes either a
- 4 sample size or a number of events, and the trials are
- 5 adaptable to establish that they have the appropriate
- 6 power by the time they are completed.
- 7 So the sildenafil program began in 2001, at
- 8 which point sildenafil did not have an indication for
- 9 pulmonary hypertension in adults. Thus they were
- 10 asked to conduct three separate placebo-controlled
- 11 trials in children. One of those was in primary
- 12 pulmonary hypertension of the newborn; one was in
- 13 children who had undergone corrective cardiac surgery;
- 14 and, the third one was a placebo-controlled trial in
- 15 the primary and secondary pulmonary hypertension, more
- 16 analogous to their adult indication that they
- 17 eventually got.
- In addition, the sponsor was asked to
- 19 provide some long-term uncontrolled safety data from
- 20 the children who had been enrolled in the placebo-
- 21 controlled studies.
- 22 By 2005, the world had changed. Revatio was

- 1 approved to treat pulmonary hypertension in adults.
- 2 In addition, there was uptake in the use of nitric
- 3 oxide in the settings of primary pulmonary
- 4 hypertension of the newborn and in post-surgical
- 5 patients. This largely rendered infeasible, as well
- 6 as unnecessary, the studies that Pfizer had been asked
- 7 to do in those settings. And at that point, both of
- 8 those studies were dropped from the written request.
- 9 There have, in addition, been four other relatively
- 10 minor amendments to the written request during its
- 11 history.
- I wanted to call your attention to one key
- 13 aspect of written requests, at least ones that come
- 14 from the Cardio-Renal Division, that anticipates that
- 15 there may be a need for very late change in a written
- 16 request. We are not allowed to make success in a
- 17 trial be the criteria for deciding that the trial
- 18 fulfills the terms of the written request. It can't
- 19 actually be dependent on the outcome of the trial.
- 20 So to finesse the fact that that's
- 21 interpretable information, we have a clause that says
- 22 if you've obtained unexpected benefits or indeed your

- 1 DMC has shut you down because of safety concerns --
- 2 that's an interpretable result -- we allow for the
- 3 sponsor to provide us not a complete study report, but
- 4 at least a summary of that information that will allow
- 5 us to revise, at the last possible moment, the
- 6 requirements of the written request.
- 7 So in summary, the written request is based
- 8 on the collection of useful information. It does not
- 9 necessarily lead to an extension of the indication for
- 10 use in children. And substantial and late changes to
- 11 the written request are an expected part of what
- 12 happens as one's background information on the use in
- 13 children evolves.
- 14 Questions that you'll have to face later
- 15 today are then whether or not we have identified a
- 16 surrogate endpoint that is suitable for use in
- 17 deciding whether or not a drug that you know is
- 18 effective in adults is also likely to be effective in
- 19 children with the same disease.
- Then if you've bought into that, we'll ask
- 21 you how you'd think through establishing what effect
- 22 size might be important to ensure an interpretable

- 1 program.
- 2 So I'll stop there, and Dr. Durmowicz and I
- 3 will take questions about the written request process
- 4 and sildenafil's written request specifically, if you
- 5 have any.
- DR. KAUL: Thank you, Dr. Stockbridge.
- 7 I will open it up for questions from the
- 8 committee.
- 9 Dr. Coukell?
- 10 DR. COUKELL: Thank you for that
- 11 introduction.
- Did the original written request for the
- 13 placebo-controlled study in primary and secondary
- 14 pulmonary arterial hypertension specify the use of a
- 15 performance or a physical outcome measure?
- DR. STOCKBRIDGE: It did. Their original
- 17 program in PAH had an exercise endpoint, and the
- 18 Pfizer folks will describe those results to you during
- 19 their presentation.
- DR. KAUL: Any further questions?
- [No response.]
- DR. KAUL: Thank you.

1 Before I call upon the sponsors to give

- 2 their presentation, both the Food and Drug
- 3 Administration and the public believe in a transparent
- 4 process for information gathering and decision-making.
- 5 To ensure such transparency at the advisory committee
- 6 meeting, the FDA believes that it is important to
- 7 understand the context of an individual's
- 8 presentation.
- 9 For this reason, FDA encourages all
- 10 participants, including the sponsor's nonemployee
- 11 presenters, to advise the committee of any financial
- 12 relationships that they may have with the firm at
- issue such as consulting fees, travel expenses,
- 14 honoraria, and interests in the sponsor, including
- 15 equity interests and those based upon the outcome of
- 16 the meeting.
- 17 Likewise, FDA encourages you, at the
- 18 beginning of your presentation, to advise the
- 19 committee if you do not have any such financial
- 20 relationships. If you choose not to address this
- 21 issue of financial relationships at the beginning of
- 22 your presentation, it will not preclude you from

- 1 speaking.
- 2 At this point, I'm going to call upon the
- 3 sponsors to give their presentation. I think the
- 4 first speaker is going to be Dr. Robyn Barst.
- DR. BARST: Dr. Temple, Dr. Stockbridge,
- 6 members of the advisory committee, and ladies and
- 7 gentlemen in the open forum, good morning. My name is
- 8 Robyn Barst, and I'm from Columbia University in New
- 9 York City. It is my great pleasure this morning to
- 10 have been asked to speak with you to give an overall
- 11 clinical perspective on pulmonary arterial
- 12 hypertension in children and adults.
- For complete transparency, my disclosures
- 14 are shown in this slide. I have received support for
- 15 research and consulting in the field of pulmonary
- 16 hypertension form the pharmaceutical companies as
- 17 listed on this slide. I also am currently serving as
- 18 a consultant to Pfizer for this advisory committee
- 19 meeting.
- 20 Having spent the past 30 years working in
- 21 the field of pulmonary hypertension, we have made
- 22 significant advances. From being in the field when

1 the only treatment we had to offer patients and their

- 2 families was comfort with patients dying within
- 3 several years of being diagnosed and children often
- 4 dying within one year of diagnosis, the advances have
- 5 made a significant impact. We now have eight drugs
- 6 approved for PAH, and these drugs have significantly
- 7 improved the overall quality of life and outcomes for
- 8 many patients.
- 9 However, we have no drugs approved for
- 10 children. A primary reason for this is lack of an
- 11 agreed upon, clinically relevant, accepted endpoint to
- 12 use in children with PAH in controlled studies.
- 13 After giving a brief overview of pulmonary
- 14 arterial hypertension in children and adults, I will
- 15 discuss why we believe that hemodynamics, specifically
- 16 pulmonary vasculature resistance index, is an
- 17 appropriate endpoint to consider using for controlled
- 18 studies in children.
- 19 Following my presentation, you will hear
- 20 from the FDA and from the sponsor, their proposal
- 21 discussing exploring hemodynamics, specifically PDRI,
- 22 for us to discuss as a potential appropriate endpoint.

```
1 What is pulmonary hypertension? Pulmonary
```

- 2 hypertension is a hemodynamic and pathobiologic state
- 3 that is found in many clinical conditions. By itself,
- 4 it is not a disease. By definition, it means that the
- 5 main pulmonary artery pressure is elevated above
- 6 normal, with a minimum elevation of 25 millimeters of
- 7 mercury when we measure the main pulmonary artery
- 8 pressure directly.
- 9 Pulmonary hypertension is classified in just
- 10 five groups, as shown on this slide. Group 1, which
- 11 is termed pulmonary arterial hypertension or PAH, as
- 12 it may be discussed today, is the group that we will
- 13 be focusing on today. We use the same clinical
- 14 classification in both children and adults.
- 15 If we move forward and we look more closely
- 16 at Group 1 PAH, we see different forms that are
- 17 considered under this umbrella of Group 1 PAH.
- 18 This classification has been assessed and
- 19 has been put forward by the PH expert consensus
- 20 community, because all of these forms share similar
- 21 clinical presentations and virtually identical
- 22 histopathologic features in the small pulmonary

- 1 vasculature of the pulmonary arterials where this
- 2 disease arises. The same classification and subgroups
- 3 under Group 1 PAH we use in children and adults based
- 4 on U.S. and European guidelines.
- 5 Where is the problem in PAH? PAH in both
- 6 children and adults is shown where it's schematically
- 7 localized on this slide in that it is pre-capillary
- 8 pulmonary arterial hypertension, after excluding all
- 9 other causes of pulmonary hypertension. In addition
- 10 to excluding other causes of pulmonary hypertension
- 11 and requiring that the main pulmonary artery pressure
- 12 must be at least 25 millimeters of mercury measured
- 13 invasively by right heart catheterization at rest, a
- 14 right heart catheterization is required to confirm the
- 15 diagnosis to make sure that there is no evidence of
- 16 increased left-sided filling pressure as a cause of
- 17 the pulmonary hypertension, as well as to demonstrate
- 18 that the pulmonary vasculature resistance is
- 19 increased.
- The pulmonary vasculature resistance is a
- 21 biologic marker of what this disease is itself. And
- 22 our consensus guidelines support that right heart

- 1 catheterization is necessary for us to diagnosis the
- 2 disease and assess how patients are doing when we
- 3 initiate treatment.
- 4 So let's look at what this disease is and
- 5 turn to the pathology. Shown on the left side of the
- 6 slide is a normal thin wall pulmonary arterial. The
- 7 vascular lumen is exceedingly open, and it's
- 8 relatively easy for blood to flow through here.
- 9 Because the lumen is very open, the pressure required
- 10 for the right side of the heart to generate a pressure
- 11 to push blood through the lung is quite low. And our
- 12 normal pulmonary pressures are 10 to 15.
- However, if we look at a typical pulmonary
- 14 arterial in either a child or an adult with pulmonary
- 15 arterial hypertension and we focus down on the size of
- 16 the lumen, you will see that the size of the lumen has
- 17 now narrowed significantly. And based on Ohm's Law,
- 18 thus although the disease is due to the pulmonary
- 19 vascular resistance, this results in the right heart
- 20 having to generate an increased pressure, the
- 21 resultant pulmonary hypertension, to get adequate
- 22 blood flow through the lungs. Thus, in this case with

- 1 PAH, the pulmonary hypertension is secondary to the
- 2 disease, which is an increased pulmonary vasculature
- 3 resistance in the lungs.
- 4 In addition to the pulmonary arterial
- 5 hypertension being similar from a pathologic
- 6 standpoint in the lungs in both children and adults,
- 7 whether the child is still growing, the differences
- 8 that we have demonstrated in mechanisms of
- 9 pathobiology have also been the same. The
- 10 pathobiology of pulmonary arterial hypertension is
- 11 exceedingly complex. A number of pathways have been
- 12 demonstrated to have abnormalities in both children
- 13 and adults.
- 14 This schematic representation is limited to
- 15 three pathways at this point because these are the
- 16 pathways that we've been successful to date in
- 17 developing drugs for to treat adult PAH. These
- 18 include the endothelin pathway, the nitric oxide
- 19 pathway, and the prostacyclin pathway. The
- 20 abnormalities that we've seen in these three pathways
- 21 we have also observed in children similar to our
- 22 observations in adult patients.

1 So how does this disease present and what

- 2 can we do to make patients feel better? On this
- 3 schematic representation, shown across the top is a
- 4 progression of the disease in the pulmonary
- 5 vasculature going from when the patient is pre-
- 6 symptomatic because he's compensated. We see further
- 7 obliteration of the vascular lumen, and then we see
- 8 complete obliteration of the vascular lumen.
- 9 There's no time frame put on the X axis
- 10 because patients can be diagnosed and rapidly
- 11 deteriorate and die within months or they can live at
- 12 least several years. What's important is as the
- 13 disease progresses, it's because it's a disease of
- 14 obstruction of the pulmonary vasculature that the
- 15 pulmonary vascular resistance continues to increase
- 16 correlating with the progression of the disease
- 17 overall in the lung.
- 18 We'll get into how these patients present
- 19 with symptoms which are rather nonspecific and
- 20 insidious. But to simplify this and as an example,
- 21 initially, as the pulmonary vascular resistance
- 22 increases, the right ventricle is able to increase

- 1 pulmonary artery pressure and maintain an adequate
- 2 cardiac output. Over time, the right ventricle no
- 3 longer is able to generate the increased cardiac
- 4 output, particularly with exercise, and the patient
- 5 presents with dyspnea on exertion.
- 6 Further along, the patient is no longer able
- 7 to generate adequate right ventricular work at rest,
- 8 and the patient goes into progressive right heart
- 9 failure, with a decline in cardiac index, increase in
- 10 right heart filling pressure. And, in fact, even
- 11 though the patient is getting worse, the pulmonary
- 12 artery pressure here is falling. Based on this
- 13 representation, it is clear that pulmonary vascular
- 14 resistance is exceedingly useful in assessing the
- 15 disease severity and what's happening in patients.
- To illustrate some of the issues that we'll
- 17 be discussing today and how can we assess children and
- 18 adults with pulmonary hypertension, I'd like to
- 19 present a case presentation. We have taken care of
- 20 hundreds of children and adults at our center, but I'm
- 21 choosing a young child to illustrate some of the
- 22 particular challenges we have when we're faced with a

1 young child, particularly a child who's unable to

- 2 perform exercise testing.
- 3 This 2-year-old child presented with cough
- 4 and unexplained dyspnea on exertion while playing.
- 5 She was diagnosed as having asthma, but did not
- 6 improve with treatment. Her unexplained dyspnea
- 7 continued. Her workup was unremarkable except for
- 8 suspected pulmonary hypertension. Pulmonary artery
- 9 hypertension was confirmed by right heart
- 10 catheterization, and based on the results of the right
- 11 heart catheterization, treatment was initiated.
- 12 Our standard of care for all children,
- 13 regardless of age, and for all adults, includes serial
- 14 evaluation, which includes repeated right heart
- 15 catheterizations to assess response to therapy. We
- 16 certainly also put significant impact on an ability to
- 17 exercise and feel better, and we can do that in
- 18 virtually all of the adults that we take care of and
- 19 we see. However, as we will discuss shortly, we
- 20 really are only able to do that in approximately in
- 21 one-third of children who we could consider
- 22 appropriate to enroll in a controlled trial.

- 1 This slide shows this 3-year-old's
- 2 hemodynamics at the time of diagnosis. Her main
- 3 pulmonary artery pressure was quite high. Her
- 4 pulmonary vascular resistance was over 1,000 dynes.
- 5 She was too young to perform exercise testing.
- 6 However, based on the results of her cardiac
- 7 catheterization, we initiated monotherapy, a drug that
- 8 had been approved for adult PAH. Our routine
- 9 practice, regardless of what the parents and the child
- 10 tell us, even though that's very, very important to
- 11 try to get an assessment from the family, is to
- 12 perform serial cardiac catheterizations.
- 13 Her catheterizations at 4 and 6 are shown on
- 14 this slide, which were consistent with her reported
- 15 clinical improvement and her pulmonary vascular
- 16 resistance now having decreased to less than 500
- 17 dynes.
- 18 Based on this, we continued the monotherapy.
- 19 Over the ensuing year, her parents were unsure if she
- 20 now was becoming slightly symptomatic again or she no
- 21 longer liked to play soccer, but she would just rather
- 22 sit inside and paint. Nevertheless, regardless of

- 1 what the parents or the child had told us -- because
- 2 sometimes even when they say everything is fine,
- 3 everything may not be fine -- her repeat cardiac
- 4 catheterization at age 7 demonstrated she had had
- 5 significant deterioration in her pulmonary arterial
- 6 pressure.
- 7 Her pulmonary vascular resistance was now
- 8 greater than 1500 dynes, and her main pulmonary artery
- 9 pressure had significantly increased. However, as we
- 10 will see when we look at children overall,
- 11 particularly young children, her cardiac index at rest
- 12 remains normal.
- 13 Based on that follow-up evaluation, we
- 14 initiated additional PH therapy, using an off label
- 15 that has been approved for adults. She improved, and
- 16 this young lady continues to be followed at the
- 17 pulmonary hypertension center with adjustments in her
- 18 medical therapy based on follow-up cardiac
- 19 catheterizations and, as she got older, follow-up
- 20 exercise studies.
- 21 At age 7, this was the first time that we
- 22 tried to exercise this young lady. Her six-minute

- 1 walk was within normal limits for a child of her age
- 2 and gender and height; not surprising, since her
- 3 cardiac index was normal at rest or even on the high
- 4 side.
- 5 We then performed cardiopulmonary exercise
- 6 testing which we believe gives us a better assessment,
- 7 even in children who say they feel relatively
- 8 asymptomatic. And, in fact, her peak oxygen
- 9 consumption was significantly decreased. And with
- 10 effective therapy, that improved over time.
- 11 So let's use that one example and look at an
- 12 overall cohort of children and adults who were
- 13 diagnosed with PAH. These are data from the U.S.
- 14 current REVEAL Registry. And these are the
- 15 hemodynamics in both cohorts at the time of diagnosis.
- 16 Both the children and adults have similar elevation in
- 17 pulmonary artery pressure in the 50s and, similarly,
- 18 severe elevation in pulmonary vascular resistance over
- 19 1500 dynes. However, as the young child demonstrated,
- 20 the resting cardiac index for these children overall
- 21 is normal, with the resting cardiac index for the
- 22 adults slightly decreased.

- 1 The symptoms at the time of diagnosis in
- 2 these same children and adults are shown on this
- 3 slide. The most frequent presenting symptom in both
- 4 children and adults is dyspnea on exertion. However,
- 5 it's important to note that even though these children
- 6 had severe hemodynamic impairment, only 43 percent of
- 7 the children had dyspnea on exertion either reported
- 8 by their parents, their teachers, their siblings or
- 9 themselves. Thirty-two percent of the children
- 10 presented with syncope.
- It is our belief that this is because
- 12 children, especially young children, do not understand
- 13 the philosophy of self limitation. As opposed to an
- 14 adult, if we begin to feel breathless, we probably
- 15 will sit down; or if we begin to feel light-headed
- 16 walking up stairs, we'll probably sit down right away.
- 17 Children don't do this.
- 18 Fatigue is significantly seen in both
- 19 children and adults, a nonspecific finding. And if we
- 20 look at peripheral edema, a reflection of clinical
- 21 right heart failure, these data are consistent with
- 22 the hemodynamics at the time of diagnosis in that the

1 overall cardiac index at rest was slightly low in the

- 2 adults, consistent with peripheral edema, a sign of
- 3 clinical right heart failure at the time of diagnosis.
- 4 However, I want to get back to the point
- 5 that merely because their presenting symptoms may be
- 6 somewhat different at the time of diagnosis, it should
- 7 not be not inferred that this means the disease is not
- 8 similar.
- 9 Let's look at another example of a pulmonary
- 10 disease, asthma. Asthma is considered the same
- 11 disease in children and adults. However, children
- 12 present with cough and adults present with wheezing.
- 13 It doesn't mean the disease is not the same. It just
- 14 means that the symptoms at presentation aren't the
- 15 same. And there are a whole host of other diseases
- 16 that we see that with.
- The consensus amongst the PAH community
- 18 overall is that the pathobiology and pathophysiology
- 19 are the same in children and adults. Furthermore, the
- 20 consensus is that the pulmonary hypertension
- 21 diagnostic workup and therapeutic algorithm proposed
- 22 for adults should also be considered in children.

- 1 In the case presentation that we briefly
- 2 discussed, treating this young child with PAH drugs
- 3 that have been approved for adults off label certainly
- 4 appeared to improve her clinically and from a
- 5 hemodynamic standpoint.
- 6 However, are we treating this child the best
- 7 we can? We don't know the answer to that. One of the
- 8 reasons and a significant reason for that is we do not
- 9 have controlled data in these children. And despite
- 10 the challenges in new drug development in pulmonary
- 11 arterial hypertension, this is a serious unmet medical
- 12 need. We need to obtain the necessary data to make
- 13 sure we are dosing these children properly and giving
- 14 them the optimal therapy they deserve.
- 15 As was so eloquently discussed earlier,
- 16 there are a number of challenges in pediatric research
- 17 overall. In addition, there's specific challenges in
- 18 pediatric PAH research. We've used exercise endpoints
- 19 successfully in all of our registration studies to
- 20 date. However, exercise endpoints are often not
- 21 useful in children. A significant proportion of
- 22 children with PAH are not exercise limited. In

- 1 addition, a significant proportion of children are
- 2 unable to undergo formal exercise testing regardless
- 3 of their age.
- 4 These studies are very difficult to enroll.
- 5 The disease is rare in adults, and the prevalence is
- 6 much rarer even in children. And physicians often
- 7 prescribe drugs approved for PAH use in adults to
- 8 children with PAH off label. Parents are reluctant to
- 9 enroll children with a serious disabling and
- 10 progressive disease in a clinical trial in which they
- 11 may receive placebo.
- 12 What I'm showing on this slide are the
- 13 clinically relevant potential endpoints that we could
- 14 consider using in children. And I've listed the
- 15 endpoints that we have been successful with using in
- 16 adults, the exercise test and functional class quality
- 17 of life, et cetera. Six-minute walk has been the
- 18 primary endpoint or co-primary endpoint for all of our
- 19 studies that currently are approved in the U.S.
- 20 Unfortunately, the six-minute walk test will
- 21 only be abnormal in a minority of developmentally able
- 22 children. Many children who perform the six-minute

1 walk test will have a normal six-minute walk test, as

- 2 this child had. Perhaps if we standardized a 12-
- 3 minute run test, we may be able to see abnormalities.
- 4 But that's not something we have.
- 5 Cardiopulmonary exercise testing, as you
- 6 will see by the presentation from the sponsor, we
- 7 utilized as the primary endpoint, and we selected this
- 8 because we felt at least we would be able to obtain
- 9 accurate data in children who could perform the
- 10 exercise test reliably as long as they had exercise
- 11 intolerance. But again, cardiopulmonary exercise
- 12 testing has turned out to be only applicable in
- 13 children who, number one, are developmentally able,
- 14 have exercise intolerance and do not have a history of
- 15 syncope. And if we put these three exclusions
- 16 together, we're left with approximately one-third of
- 17 children in whom we can do formal exercise testing, at
- 18 best.
- 19 Functional class and quality of life
- 20 assessments have been validated in adult PAH studies.
- 21 However, they're very difficult to assess in young
- 22 children. Morbidity and mortality is currently being

- 1 used as a primary endpoint in some of our ongoing
- 2 adult clinical trials. However, this is not feasible
- 3 in pediatric PAH. The event rate is very low in
- 4 children. It would require a very large and prolonged
- 5 trial, and the recruitment issues in pediatrics are
- 6 much more difficult, as we discussed earlier, than in
- 7 adult patients.
- 8 Hemodynamic variables, pulmonary arterial
- 9 hypertension is a hemodynamic disease. We require
- 10 right heart catheterization to confirm the diagnosis
- 11 of PAH. We utilize repeat hemodynamic assessment to
- 12 assess response to treatment, to changed treatment,
- 13 and to assess disease severity. It's a parameter that
- 14 we can perform in patients of all ages, children of
- 15 all ages as well as adults of all ages. When we
- 16 perform this in experienced centers, there is a very
- 17 low morbidity and mortality in both the pediatric and
- 18 adult pulmonary hypertension centers.
- This shows the hemodynamic assessment by
- 20 right heart catheterization that the PAH community has
- 21 considered a very important measure of efficacy in
- 22 adult PAH. What's shown on the left side of the slide

- 1 are the eight drugs that are currently approved to
- 2 treat adult PAH. The primary endpoint for the
- 3 registration studies in all of these was six-minute
- 4 walk or as a co-primary. Shown on the far right is
- 5 that hemodynamic evaluation was included in the drug
- 6 development programs for all of these studies.
- Having participated in all of these studies,
- 8 either as a principal investigator, data safety
- 9 monitoring board member, steering committee member or
- 10 scientific advisory board member, we supported that it
- 11 was exceedingly important that the sponsor utilize and
- 12 allow us to assess hemodynamics regardless of whether
- 13 it was going to be considered a primary endpoint.
- So if we return briefly to the schematic
- 15 representation, the reason we believe that pulmonary
- 16 vascular resistance is exceedingly useful is that it's
- 17 something that we can measure accurately and it is the
- 18 one parameter that encompasses everything that is
- 19 going on in the pulmonary circulation. And whether
- 20 the right heart function is good or bad, it tells us
- 21 what the disease is doing and is the disease severity
- 22 improving or not.

- 1 In conclusion, pulmonary arterial
- 2 hypertension is defined hemodynamically in children
- 3 and adults. Serial hemodynamic assessments are
- 4 central to assessing the response to treatment and the
- 5 presence of disease progression. Exercise testing as
- 6 an endpoint is only applicable in approximately one-
- 7 third of children with pulmonary arterial
- 8 hypertension.
- 9 Morbidity and mortality trials are
- 10 unrealistic in this patient population. Hemodynamic
- 11 assessments can be performed in children and adults of
- 12 all ages. Hemodynamic assessment, specifically PVRI,
- 13 have been frequently included as an efficacy variable
- 14 in our adult PAH trials. And hemodynamic assessments,
- 15 specifically PVRI, are an appropriate measure that we
- 16 would like you to consider today as a clinically
- 17 relevant endpoint to consider for future pediatric
- 18 trials with PAH. Thank you.
- DR. KAUL: Thank you, Dr. Barst, for a very
- 20 erudite and informative presentation.
- 21 Questions from the committee? Dr. Halperin?
- DR. HALPERIN: Just as a matter of

- 1 information, of the serial measurement of PVRI over
- 2 time in these children who may be prone either to
- 3 weight loss as a result of cachaxia or to weight gain
- 4 as a result of edema, how do you establish comparative
- 5 values?
- 6 DR. BARST: The hemodynamics do not --
- 7 they're unaffected with a child who is getting better
- 8 or not based on their therapy if they have weight gain
- 9 or weight loss. It's unaffected by that.
- 10 DR. HALPERIN: So the calculation that's
- 11 based on body surface area would not be influenced by
- 12 weight.
- DR. BARST: It's not significantly
- 14 influenced by weight. We certainly look at this from
- 15 the standpoint of PVR and PRVI based with the
- 16 children. But that has never been an issue
- 17 whatsoever. Their height is not affected by the
- 18 disease severity. There are some preliminary data
- 19 from the United Kingdom that in very, very sick
- 20 children, they look at disease scores and that appears
- 21 to be a poor prognostic parameter. That's not the
- 22 experience in other countries. And even in those very

1 sick children, when they improve, their weight has not

- 2 significantly increased. So their body surface area
- 3 has not changed.
- 4 DR. KAUL: Dr. Coukell?
- 5 DR. COUKELL: Thank you.
- Two quick questions. One is to help me
- 7 understand. You're saying that measuring exercise
- 8 endpoints in children is not useful or not possible.
- 9 And then secondly, you said regardless of what the
- 10 parents or the children tell us, essentially, we treat
- 11 the number. So what's the outcome? What does it mean
- 12 to treat that number?
- DR. BARST: Very good question, I'm glad you
- 14 asked. We can have children that become asymptomatic
- 15 based on the child telling us or the parents or the
- 16 teachers. And we can then repeat a cardiac
- 17 catheterization, and the pulmonary vascular resistance
- 18 can be just as high as it was before or slightly
- 19 lower. And we're left with a child who, in fact, has a
- 20 potential ticking bomb inside that child.
- 21 For good or bad, having treated many
- 22 children and adults from 1978 until we had our first

- 1 drug approved in 1995, I had the very difficult
- 2 experience of observing personally the natural history
- 3 of many, many children and adults and seeing those
- 4 patients die with little that we could offer them.
- 5 The only treatment we did have to offer at
- 6 that point was consideration of lung transplantation,
- 7 because that's such a serious consideration that if we
- 8 wanted to go that next step, we would do serial
- 9 catheterizations to really determine do we think this
- 10 child has a likelihood of living two years or not.
- 11 And we sort of focused that into when a child should
- 12 be transplanted.
- So unfortunately, we were able to see the
- 14 natural progression of severe elevations in pulmonary
- 15 vascular resistance. And we would see that in
- 16 children very often get worse before the children
- 17 became very symptomatic, particularly young children,
- 18 who can die suddenly from a syncopal episode when
- 19 their normal daily activities may be fine walking
- around the house.
- 21 So that's one thing that's very important.
- 22 We do believe that hemodynamics are the gold standard

- 1 to assess disease severity. We do see that when we
- 2 treat patients effectively and they feel better, their
- 3 pulmonary vascular resistance invariably decreases.
- 4 And it's inappropriate, in my opinion, that if we
- 5 follow children to wait until a child or their parents
- 6 says they're symptomatic for us to reassess them,
- 7 because we have data now that initiating treatment
- 8 earlier appears to be more effective.
- 9 However, I think exercise testing is
- 10 exceedingly important when we can do it. We do adult
- 11 studies, and I am in total support that our primary
- 12 endpoint has been exercise. We do secondary endpoints
- of hemodynamics, because to me personally, both of
- 14 those are very useful in assessing how an adult
- 15 patient is doing.
- But at least exercise can be equated to feel
- 17 better, because we can look for "do I feel better" in
- 18 all the adults. I recommend and I support that we do
- 19 use a parameter such as exercise capacity in adults or
- 20 we use a parameter such as clinical disease
- 21 progression.
- However, in children, even though I would

- 1 like to be able to exercise all children -- and
- 2 certainly, at our center, we exercise all children
- 3 once they're able to, and it usually will take several
- 4 years. If we start to try to put them on the bike at
- 5 age 5, usually by age 7 or 8, it's reliable. When we
- 6 look at how many children we could exercise to enroll
- 7 in a study, it comes down to only a third.
- As you will see, subsequently, when we were
- 9 designing the pediatric sildenafil clinical trial, we
- 10 anticipated that virtually all children over 7 years
- 11 of age would be able to exercise. And so we
- 12 anticipated that probably half the patients we
- 13 enrolled would not be able to exercise.
- 14 As you will hear, it turned out to be a much
- 15 greater percentage of children who could not exercise
- 16 for two reasons. A number of children who are over 7
- 17 still are not developmentally able to understand how
- 18 to maintain and perform a full effort and the
- 19 importance of the exercise test. And a second reason
- 20 is because we want to see what we consider a
- 21 clinically relevant treatment effect with exercise
- 22 testing and we selected peak oxygen consumption as the

- 1 primary endpoint, we included upper and lower limits
- 2 for enrollment in order that we would be enrolling
- 3 children that if they got better, we would see an
- 4 improvement.
- 5 What this resulted is a number of children
- 6 who came to the centers who we screened and thought
- 7 they would be appropriate to enroll in the study
- 8 because we knew they had severe hemodynamic impairment
- 9 and severe elevation in the pulmonary vascular
- 10 resistance, but from their exercise testing, their
- 11 peak oxygen consumption was too high for us to be able
- 12 to enroll them since that was our primary endpoint.
- So I would love to do exercise testing in
- 14 all the patients, but I think for controlled data,
- 15 it's important that we look at a parameter that is
- 16 accurate and that we can measure in every single
- 17 child, and then also perform exercise testing in all
- 18 the children we can, which will turn out to be a
- 19 minority, but still have those data that we can use as
- 20 supportive secondary endpoints.
- DR. KAUL: Thank you, Dr. Barst. The
- 22 committee would appreciate if you can keep your

1 answers brief so as to accommodate questions from

- 2 other committee members.
- 3 DR. BARST: My apologies, I apologize.
- 4 DR. KAUL: Dr. Neaton?
- DR. NEATON: Two questions.
- So you pointed out two problems with using
- 7 the exercise tests; one, that some kids just can't do
- 8 it. Another is that the kids are not exercise
- 9 limited. So that suggests to me that the relationship
- 10 between, for example, changes in six-minute walk and
- 11 perhaps, also, changes in peak oxygen consumption as
- 12 they relate to the changes in the hemodynamic measures
- 13 may be different in children than they are in adults.
- 14 Can you comment on that?
- Then the second question is, can you advise,
- 16 based on your experience in either the trials or
- 17 clinic, what's a reasonable follow-up period,
- 18 frequency of measuring the hemodynamics measurements
- in a study; how long after initiating treatment and
- the number of measurements?
- DR. BARST: I will try to be brief. But now
- 22 I need you to reask me the first question.

1 DR. NEATON: So is the relationship

- 2 between --
- 3 DR. BARST: Thank you. The difficulty with
- 4 the six-minute walk is because the majority of
- 5 children have good right heart function and they can
- 6 walk six minutes just fine, but they may have a
- 7 pulmonary vascular resistance of 1,500. They have
- 8 severe disease, but they can do a normal six-minute
- 9 walk. So if we use that as the test, we wouldn't see
- 10 a treatment effect. In fact, in our adult studies, we
- 11 put an upper limit on for that very reason.
- However, with the CPET for the children who
- 13 can do it, it is very useful, and, in fact, we will
- 14 see a low peak VO2 and other abnormal parameters of
- 15 cardiopulmonary exercise testing in children who have
- 16 significant PAH, even though their six-minute walk is
- 17 normal. And you will see data presented that there is
- 18 a correlation.
- 19 There are two different exercise tests.
- 20 They both demonstrate exercise capacity. We just need
- 21 to use something that requires more exercise capacity
- 22 to demonstrate the abnormalities in children.

- 1 DR. NEATON: Maybe we'll see it in the
- 2 future data, but so that there's a stronger
- 3 relationship between peak VO2 changes and hemodynamic
- 4 changes or that they're at the concordance of that
- 5 relationship in children and adults, you would expect
- 6 it to be strong, more similar than between six-minute
- 7 walk changes.
- BARST: Yes. And there certainly is
- 9 significant data in adults that demonstrate a good
- 10 correlation between peak VO2 and six-minute walk,
- 11 which is useful and provides comfort to us in the
- 12 sense that the six-minute walk we've used in adults
- does correlate with peak VO2, because those patients
- 14 are limited in their six-minute walk distance. So
- 15 therefore, in children, even if they're not limited by
- 16 their six-minute walk, their limitation in peak
- 17 VO2 also correlates with how they're doing.
- 18 DR. NEATON: How often do you catheterize
- 19 and do the measurements?
- 20 DR. BARST: Our standard of care unrelated
- 21 to a clinical trial -- and I think this is really
- 22 important, and it's always been this way. Our

- 1 standard of care is we do a catheterization at
- 2 diagnosis. Before 2001, when we had therapies in
- 3 addition to Flolan, we may have not done as many
- 4 serial cardiac catheterizations, because we put the
- 5 children on intravenous epoprostenol and we would
- 6 catheterize them really only if we were concerned
- 7 about transplantation. However, now that we
- 8 have eight drugs approved, our standard of care is
- 9 that we better make sure we're treating the child with
- 10 the best drug possible. So we do a baseline
- 11 catheterization. We start a drug, and we routinely
- 12 repeat a right heart catheterization after three or
- 13 four months to make sure that even if the child feels
- 14 better, their hemodynamics are better. And if their
- 15 pulmonary vascular resistance is still very elevated
- or hasn't significantly decreased, even if the child
- 17 says they feel great, we augment therapy based on
- 18 that.
- DR. KAUL: Thank you, Dr. Barst.
- We have 10 minutes, and we have seven
- 21 individuals that are willing to ask questions. So
- 22 once again, the committee would appreciate it if you

- 1 can keep your answers succinct.
- 2 Dr. Newman?
- 3 DR. NEWMAN: For the committee, would you
- 4 review -- and maybe those of you that were there --
- 5 the decision by the FDA in concert with the
- 6 pharmaceutical companies years ago to use the six-
- 7 minute walk as the endpoint in studies rather than
- 8 hemodynamics? Because I think that some of the
- 9 confusion about the relationship that arises from that
- 10 distinction, which is partly artificial. I think it's
- 11 partly the issue here at hand today, which is can you
- 12 extrapolate one from the other, what's the
- 13 relationship and how firm is that relationship in
- 14 predicting outcomes. Can you just review that for a
- 15 minute for us? And then I have a second question.
- DR. BARST: Could I ask either
- 17 Dr. Stockbridge or Dr. Temple to answer that question?
- 18 DR. STOCKBRIDGE: I don't think the issue of
- 19 surrogate endpoint even came up in early discussions
- 20 about developing drugs in adults here. They were
- 21 symptomatic. It was clear people could do something
- 22 to establish the benefit.

- 1 We didn't particularly endorse the six-
- 2 minute walk. The industry sort of adopted it, and it
- 3 got replicated through various development programs.
- 4 But we have a general distrust of surrogate endpoints.
- 5 That's been developed through other cardiovascular
- 6 disease experience. And so it was fairly natural to
- 7 assume that we'd want some kind of clinical benefit
- 8 demonstrated in the adult studies.
- 9 DR. KAUL: Dr. Temple?
- 10 DR. TEMPLE: My dim recollection is that the
- 11 stress tests, which generally involved a rising level
- of stress, were just not doable by a lot of adults.
- 13 Obviously, they can be done by some, but the six-
- 14 minute walk is less of a stretch. You're walking at
- 15 your -- but this was a while ago, and I'm not really
- 16 sure of that.
- DR. KAUL: Perhaps Dr. Rich can weigh in
- 18 since he was there.
- DR. RICH: Very briefly, we did discuss with
- 20 Rap Lipicki using a surrogate hemodynamic, and it was
- 21 rejected. And so it was decided to use some measure
- 22 of exercise tolerance.

- 1 The cardiologists in the advisory group
- 2 wanted a treadmill test, which was kind of the
- 3 standard in heart failure trials. But pulmonary
- 4 physicians didn't want to work with their
- 5 cardiologists. We were outnumbered. It was a hand
- 6 vote. I think it was six to five of six-minute walk
- 7 over treadmill tests. There was not a shred of data
- 8 at the time that a six-minute walk had any efficacy or
- 9 representation of the disease, but that's where we
- 10 started from. And because the first trial was
- 11 successful, I think all subsequent trials just adopted
- 12 the same primary endpoint.
- 13 DR. BARST: And it's been successful to date
- 14 with adult patients who are exercise limited by their
- 15 six-minute walk.
- DR. KAUL: Let me just ask Dr. Rich this
- 17 question.
- 18 If there was no shred of data at that time,
- 19 has anything changed in the interim? Is six-minute
- 20 walk distance a validated surrogate endpoint?
- DR. RICH: Well, it's probably going to come
- 22 up this afternoon. If, in fact --

DR. STOCKBRIDGE: No, no, wait. That's not

- 2 a surrogate endpoint at all.
- 3 DR. RICH: Correct.
- 4 DR. STOCKBRIDGE: Exercise is not a
- 5 surrogate endpoint.
- DR. TEMPLE: We think of it as a more formal
- 7 representation of the clinical problem. You can get
- 8 debates on this, but on the whole, that's not what we
- 9 mean. It's the hemodynamic measure that we think is
- 10 not as well --
- 11 DR. RICH: The six-minute walk is what it
- is. It measures your exercise tolerance in six
- 13 minutes. And to that extent, the fact that the
- 14 approved drug showed an improvement in six-minute
- 15 walk, it is successful.
- The issue that has arisen is the implication
- 17 of a change in six-minute walk with respect to long-
- 18 term outcomes. And that's been a failure, because no
- 19 one has shown that the change in six-minute walk in
- 20 clinical trials affects outcome at all, and that may
- 21 come up when we talk about it this afternoon.
- DR. TEMPLE: There's actually one other

1 thing. These treadmill exercise tests usually involve

- 2 your failing when they change the slope, the pitch,
- 3 and you get a finding of a 15-second difference. I
- 4 think the six-minute walk sounds more real, a little
- 5 bit, even though in the angina and heart failure
- 6 setting, we persist in using stress testing of the
- 7 other kind. It has a "can you get around" quality to
- 8 it, and the difference can be more than 10 seconds.
- 9 With the standard test, you sort of fail as soon as
- 10 they change the slope.
- DR. BARST: And we explicitly used cycle
- 12 cardiopulmonary exercise testing in children for those
- 13 very reasons that Dr. Temple just discussed. In
- 14 addition, it's weight independent. So if you're doing
- 15 something with children, it's very important to be
- 16 weight independent and why we use cyclometry.
- Dr. Newman, you weren't allowed to ask your
- 18 question.
- DR. NEWMAN: So the reason I asked my
- 20 question was to make the point, which is that the six-
- 21 minute walk was empirically derived as a measure of
- 22 outcome, not scientifically tested against hemodynamic

- 1 testing originally.
- 2 For the committee, those people that don't
- 3 do pulmonary hypertension work, you need to understand
- 4 that measuring things against the six-minute walk is
- 5 measuring something against something that was
- 6 empirically discovered or decided upon initially. So
- 7 there's a lot of softness in the assumptions
- 8 underlying this.
- 9 My second question is this, the
- 10 extrapolation issue. A lot of your children have
- 11 congenital heart disease, some ASD, some Down
- 12 syndrome, that we know that patients with ASD tend to
- 13 live longer. Do we have evidence that extrapolation
- 14 will work to the children with congenital heart
- 15 disease?
- DR. KAUL: Thank you.
- 17 Dr. Veltri?
- DR. VELTRI: This is a question. We're
- 19 dancing around the surrogate endpoint versus endpoint.
- 20 It sounds like, from your discussion this morning,
- 21 that you believe that the hemodynamic variable is part
- 22 and parcel of the disease and that you are actually

1 using that clinically both in clinical trials, as well

- 2 as management of patients.
- We have validated surrogates, if you will,
- 4 LDL cholesterol, blood pressure, hemoglobin A1C for
- 5 microvascular disease. So my question is, from a
- 6 regulatory perspective, I understand we're trying to
- 7 say this is a surrogate endpoint, but in your opinion,
- 8 is this indeed the disease and the clinical endpoint?
- 9 DR. BARST: Thank you very much for asking
- 10 that. It's my belief and those of my colleagues,
- 11 particularly the pediatric and the adult PAH
- 12 community, that pulmonary vascular resistance
- 13 measurements are the disease. And even though the
- 14 symptoms are based on the secondary effects of that
- 15 increased pulmonary vascular resistance, increasing PA
- 16 pressure and, therefore, increasing right ventricular
- 17 work, the treatment, if we're most effective, is to
- 18 decrease the pulmonary vascular resistance.
- 19 DR. KAUL: Thank you.
- 20 Dr. Rosenthal?
- DR. ROSENTHAL: I just have a few quick
- 22 questions and most of them can probably be answered

- 1 just numerically. I'm wondering, Dr. Barst, if you
- 2 can help me understand the current median survival for
- 3 children diagnosed with PAH. And then I've got a
- 4 couple of questions about risk of cath in different
- 5 situations.
- DR. BARST: For clarification, the current
- 7 median survival with our using the adult drugs off
- 8 label?
- 9 DR. ROSENTHAL: However you would describe
- 10 the current median survival with a person's own
- 11 organs.
- DR. BARST: The current five-year survival
- 13 for children, from a number of registries from Europe
- 14 and from the U.S., is approximately 70 percent, which
- is consistent with an improvement on the therapies
- 16 that are available.
- DR. ROSENTHAL: And the natural history,
- 18 getting at your point about --
- DR. BARST: The natural history was a median
- 20 survival of one to two years and a five-year survival
- 21 of less than 30 percent.
- DR. ROSENTHAL: Okay. And then moving over

- 1 to the risks of cardiac catheterization, you made
- 2 reference to caths being done in centers with
- 3 experience, and the implication is that not all
- 4 centers have that experience. I'm wondering if you
- 5 can help me understand what the risk of cardiac
- 6 catheterization is for a patient with pulmonary
- 7 hypertension in an experienced center and then what it
- 8 might be in an inexperienced center.
- 9 DR. BARST: Thank you. The risks for
- 10 cardiac catheterization for both morbidity and
- 11 mortality have decreased significantly since I've been
- 12 in the field. Where in the 1980s and early 1990s at a
- 13 center that we thought had a lot of experience, our
- 14 center, we had a mortality rate of approximately 1 and
- 15 a half percent. Over the past 10 years at Columbia,
- 16 performing 1,500 cardiac catheterizations on children
- 17 with PAH, we've had no deaths. During that time, we
- 18 had one child who arrested during the procedure and
- 19 was successfully resuscitated.
- There are recent data that are in
- 21 publication from similar centers of experience where
- 22 there are also being reported no deaths. There

- 1 certainly appears to be an increase in morbidity and
- 2 mortality from less experienced centers, although the
- 3 best data that is available is that the mortality from
- 4 those centers is still less than 2 to 3 percent.
- 5 DR. KAUL: Thank you.
- 6 Dr. McGuire, a brief question, a brief
- 7 answer, please.
- 8 DR. MCGUIRE: Okay. This should be fairly
- 9 brief. I'm concerned at the conspicuous absence of PA
- 10 saturation in all of this data analysis. PVR is
- 11 notoriously inaccurate and violates almost every
- 12 assumption of Ohm's Law, although it's probably
- 13 precise, not very accurate. So the question becomes
- 14 what are the challenges of PVR versus some other more
- 15 simple and directly measured hemodynamic parameter or
- 16 measure of performance.
- DR. BARST: We certainly measure mixed
- 18 phenol saturation and we measure the complete cohort
- 19 of pulmonary and systemic hemodynamics in all of these
- 20 patients. I just limited what I was showing you for
- 21 simplicity. It is much more difficult because we
- 22 particularly wanted to include children with

- 1 congenital heart disease associated with pulmonary
- 2 hypertension, because there are a lot of those
- 3 children, and we wanted to include children who were
- 4 who were unrepaired, as well.
- In that cohort, we must do fit calculations,
- 6 and we must get oxygen saturations from all the
- 7 appropriate sample sizes. And that has been done,
- 8 and, in fact, we looked at every single CRF to make
- 9 sure that that was done appropriately.
- DR. KAUL: Thank you.
- 11 We'll take one last question from the
- 12 committee before the FDA presentation.
- 13 Dr. Rich?
- DR. RICH: I really want to take issue with
- 15 one of the statements in one of your slides, and that
- 16 had to do with the clinically relevant outcomes. No
- 17 one is making any claim with any of the drugs of a
- 18 survival benefit. It's really whether it's halt
- 19 progression, cause regression, improve ventral side
- 20 performance, quality of life, et cetera.
- The notion that time to clinical worsening
- 22 is unrealistic in children, I totally disagree,

- 1 because if your statement is that the children don't
- 2 worsen, then what's the point, the actual history?
- 3 And if the children do worsen, then we can measure
- 4 that, and that is something that would be something
- 5 truly applicable.
- I think it will come up later, but it speaks
- 7 to the fact that children with congenital heart
- 8 disease have a much different survival pattern than
- 9 children with idiopathic pulmonary hypertension.
- 10 DR. KAUL: So, Dr. Rich, that was a comment
- 11 not a question, correct?
- DR. BARST: Could I respond to it, though?
- DR. KAUL: Please.
- DR. BARST: Thank you. I beg to disagree on
- 15 every point you made, Dr. Rich. It's been our
- 16 longstanding -- we've thought long and hard that the
- 17 natural history of congenital heart disease has a much
- 18 better long-term outcome than that of patients with
- 19 IPAH or familial PAH. However, in the current era, we
- 20 have looked at data, and with treatment we see now
- 21 identical two-year survival and five-year survival.
- Whether that is because we're being much

- 1 aggressive treating the IPAH and less aggressive with
- 2 the congenital heart disease or are we closing some of
- 3 the holes that maybe we shouldn't, I don't know. But
- 4 the survival is the same, number one.
- 5 Number two, regarding using outcome,
- 6 morbidity and mortality in the survival study as an
- 7 endpoint, I completely disagree. I would love to have
- 8 survival data, but it's unethical. And I gave an
- 9 estimate of what the overall survival was from
- 10 pediatric data around the world, which, at five years,
- 11 was approximately 70 percent; however, there are
- 12 significant differences.
- Our five-year survival at Columbia was 89
- 14 percent. We had a 10-year survival of 81 percent.
- 15 And similar data are from the University of Colorado.
- 16 If we're going to do a survival study and we have a
- 17 10-year survival of 81 percent, we're not going to be
- 18 able to do that study in any time when we want to get
- 19 a drug approved.
- DR. KAUL: Thank you, Dr. Barst.
- 21 We have to move on. We'll get back to this
- 22 in the afternoon in greater details. I'd like to call

- 1 upon Dr. Brar to give his presentation.
- DR. BRAR: Good morning, AC committee
- 3 members, Dr. Stockbridge, Dr. Temple, and the public.
- 4 I'd like to thank you-all for gathering here today.
- 5 Today I'm going to present an investigation
- 6 and the conclusions of our investigation stating that
- 7 delta PVRI or change from baseline in pulmonary
- 8 vascular resistance index should be used as an
- 9 endpoint in pediatric PAH trials for drugs that are
- 10 already approved in adults.
- 11 Prior to getting involved in the
- 12 investigation, I'd like to give you some information
- 13 about why we conducted this study. So the premise for
- 14 the investigation is, one, the exercise capacity
- 15 tests, such as the six-minute walk distance, are often
- 16 not feasible in pediatric patients with PAH.
- 17 Therefore, we need to find a measure to use to monitor
- 18 disease severity and to assess treatment efficacy.
- 19 As Dr. Barst already stated, the pediatric
- 20 disease is similar to adults. Therefore, we are using
- 21 the adult trial information to explore a particular
- 22 measure for pediatric patients. With the conclusions

- 1 of our results, our intent is primarily to use
- 2 hemodynamics as a basis of approval in pediatric
- 3 patients for PAH therapy for drugs that are already
- 4 approved in adults.
- Now, I'd like to go over the background on
- 6 why we're looking at hemodynamics. As we are all
- 7 familiar with now, pulmonary arterial hypertension is
- 8 very severe disease. The hallmark of the disease is
- 9 that we have an increase in resistance and pressure
- 10 within the pulmonary arteries. Now, the clinical
- 11 manifestation of this increase in resistance and
- 12 pressure is we get symptoms such as dyspnea on
- 13 exertion. We have chest pain.
- In addition, we have a decreased or
- 15 diminished physical activity, which could also -- we
- 16 say we have a decrease in exercise capacity. Now,
- 17 this exercise capacity measure is looked at in the
- 18 clinics currently to assess treatment effect and
- 19 disease progression. And one of the primary measures
- 20 that is used is what's called a six-minute walk
- 21 distance. What's primarily used is the six-minute
- 22 walk distance.

1 This is the primary endpoint that's used for

- 2 regulatory approval in adults. In addition and
- 3 unfortunately, we're unable to conduct this test in
- 4 pediatric patients because it's not feasible, and in
- 5 addition, the interpretability in pediatrics is a bit
- 6 contentious.
- 7 Therefore, we think keeping this schematic
- 8 in mind, that the next logical step to look at would
- 9 be this increase in resistance and pressure within the
- 10 pulmonary arteries. And one way to do this is to look
- 11 at cardiopulmonary hemodynamics. One, first and
- 12 foremost, is it's the gold standard for diagnosis in
- 13 both adults and pediatrics. Also, it characterizes
- 14 the disease progression. It represents severity and
- 15 predicts survival. Also, it's the closest measure to
- 16 the physiological target of PAH therapies.
- 17 So in our investigation, we had several
- 18 questions we wanted to answer to explore the utility
- 19 of hemodynamics. But I will summarize them in three
- 20 questions. And of note, I'm going to focus on delta
- 21 PVRI or change from baseline in pulmonary vascular
- 22 resistance index as our measure of interest. Of note,

- 1 we looked at many other hemodynamic measures for a
- 2 relationship with exercise capacity, but I will
- 3 present our top-line results, which is based on delta
- 4 PVRI.
- 5 One of the first questions we wanted to ask
- 6 is: Do treatment-induced effects on hemodynamics
- 7 explain treatment-induced effects on exercise
- 8 capacity? Now, when I generated this question, it took
- 9 me a little bit of time to actually understand what
- 10 this question means. In basic, simple terms,
- 11 accounting for the placebo, if we see an effect on
- 12 hemodynamics, does it translate to the effect seen on
- 13 exercise capacity?
- In addition, we wanted to look more on the
- 15 pooled analysis on a trial level to see, one, is there
- 16 a relationship between hemodynamics and exercise
- 17 capacity in adults? And this is to establish some
- 18 internal consistency.
- 19 With all this information, we also want to
- 20 determine then how could we use this adult hemodynamic
- 21 and exercise capacity information to design pediatric
- 22 clinical trials. So our investigation involved the

- 1 analysis of hemodynamic and six-minute walk distance
- 2 data from 13 randomized double-blind placebo- or
- 3 active-control studies from seven different therapies.
- 4 And the seven different therapies fell into three
- 5 categories of mechanisms of action, including the PDE5
- 6 inhibitors, the prostacyclins, and endothelin receptor
- 7 antagonists. And of note, what we used within these
- 8 13 randomized trials is a subset population of WHO,
- 9 Group 1, idiopathic familial PAH patients, presumably
- 10 because the idiopathic familial PAH is similar to
- 11 what's seen in the etiology in the pediatric patients.
- 12 Our analysis included a total of 1,096
- 13 subjects that had hemodynamic and six-minute walk
- 14 distance data. The hemodynamic measures were
- 15 evaluated on a univariate measure, and also
- 16 combinations were mean arterial pressure, mean
- 17 pulmonary arterial pressure, pulmonary capillary wedge
- 18 pressure, cardiac index, and right atrial pressure.
- In addition, we looked at composite measures
- 20 such as pulmonary vascular resistance index and
- 21 systemic vascular resistance index to see if they
- 22 related with six-minute walk distance. In addition,

- 1 our analysis included looking at the absolute number,
- 2 meaning for a given hemodynamic number, what does it
- 3 relate to a given six-minute walk distance. In
- 4 addition, we looked at the change from baseline at
- 5 both the delta and percent change from baseline.
- 6 So I've included in the background an
- 7 addendum looking at the percent change from baseline,
- 8 but for this presentation, I will only be presenting
- 9 the delta change. I just want to let you know that
- 10 the conclusions that I deduce from the delta change
- 11 are also applicable to the percent change from
- 12 baseline.
- Our database of 1,096 subjects included a
- 14 wide age range ranging from 18 to 83, with a majority
- of the patients being female. What I want you to
- 16 gather from this database is that we have patients of
- 17 different disease severity, of New York Heart
- 18 Association class, functional class, ranging from 1,
- 19 2, 3 and 4, where 4 is the most severe state. What I
- 20 want you to gather is that most of the patients were
- 21 NYHA Class 2 and 3, representing moderate disease.
- In addition, the trial design, we have

- 1 patients in our database that were randomized to
- 2 either control or active treatment. Control can
- 3 either be pure placebo or it could be also placebo on
- 4 top of stabilized background therapy, where we have
- 5 approximately, in our database, a total of about 40
- 6 percent of the population that was randomized to
- 7 control.
- 8 In addition, the trials that the patients
- 9 were involved in were of different durations ranging
- 10 from 12 weeks, 16 weeks and 24 weeks. So our database
- 11 included a few things. One is that the trials
- 12 involved seven different therapies of three different
- 13 mechanisms of action. In addition, we have different
- 14 disease severities. Also, patients that are
- 15 randomized to control or an active treatment, and
- 16 there are different trial durations.
- The first question we wanted to ask is: Do
- 18 treatment-induced effects on hemodynamics explain the
- 19 treatment-inducted effects on exercise capacity? And
- 20 again, in simple terms, accounting for the placebo, if
- 21 we see a change in hemodynamics, does that translate
- 22 to a change in exercise capacity?

1 Before I get involved with the results, I'd

- 2 like to orient you to the type of analysis that was
- 3 conducted to answer this question. We are looking at
- 4 what's called a double delta plot, where the first
- 5 delta is the change from baseline and the second delta
- 6 represents active minus control. So we're accounting
- 7 for the placebo. And what we have on the X axis is
- 8 the double delta PVRI, meaning the difference in the
- 9 change from baseline between active and control. And
- 10 on the Y axis, we're looking at the double delta six-
- 11 minute walk distance.
- 12 Upon looking at this grid here, if you're
- 13 not to see a relationship, you would essentially see
- 14 no systematic trend with points spanning across the
- 15 quadrants. In addition, upon looking at these
- 16 quadrants, I want you to gather the expected
- 17 physiology of these measures. The delta PVRI, if it's
- 18 to the right of the Y axis, it means that we're having
- 19 a worsening in PVRI. To the left of the Y axis, it
- 20 means we're improving PRVI. And alternatively, on the
- 21 Y axis, for six-minute walk distance, if we're above
- 22 the X axis, we're improving six-minute walk distance

- 1 or exercise capacity and below is a worsening.
- 2 So looking at the individual quadrants, up
- 3 on the right-hand quadrant, if the data points were to
- 4 fall into that range, we would see a worsening
- 5 pressure, but an improvement in exercise; on the lower
- 6 right-hand quadrant, a worsening pressure or a
- 7 worsening exercise; on the lower left-hand quadrant,
- 8 an improvement in pressure would yield a worsening
- 9 exercise; and, on the upper left-hand quadrant,
- 10 improvement in pressure would yield an improvement in
- 11 exercise.
- 12 So keeping the physiology in mind, I would
- 13 like for you to look at our results. One, we found
- 14 that the treatment-induced effect on delta PVRI
- 15 explains the treatment-induced effect on six-minute
- 16 walk distance. Here, we have on the X axis the double
- 17 delta PVRI; on the Y axis, double delta six-minute
- 18 walk distance.
- 19 What I have for you here are observations, a
- 20 total of 18 observations representing the dose group
- 21 for each of the 13 trials. And each bubble represents
- 22 the dose group and the size of the bubble represents

- 1 the number of subjects that were evaluated. So
- 2 essentially, the size of the bubble is proportional to
- 3 the number of subjects that were evaluated.
- In addition, I've denoted, as well, the
- 5 mechanisms of action for each bubble just for
- 6 reference. First and foremost, qualitatively, you
- 7 could see that -- and, of course, I've cut off the
- 8 rest of the quadrants, but the majority of the trials
- 9 fall into this upper left-hand quadrant, showing that
- 10 over placebo, an improvement of PVRI translates to an
- 11 improvement over six-minute walk distance.
- 12 In addition, looking at this more
- 13 quantitatively, we ran a linear regression, a weighted
- 14 linear regression, showing there is a statistically
- 15 significant relationship between double delta PVRI and
- 16 double delta six-minute walk distance.
- But I would like for you to keep in mind
- 18 that this is physiologically plausible, where we have
- 19 an increase over placebo in PVRI, meaning a reduction
- 20 in PVRI, meaning an improvement of PVRI, we see an
- 21 improvement of six-minute walk distance.
- The next question we wanted to ask was more

- 1 on a trial level. Is there a relationship between
- 2 hemodynamics and exercise capacity in adults? We
- 3 looked at the pooled analysis, and we looked at our
- 4 trial-level analysis to establish some internal
- 5 consistency. And as I stated earlier, we looked at
- 6 all of the hemodynamics for a particular relation with
- 7 six-minute walk distance.
- 8 We found that, first and foremost, that
- 9 delta PVRI is a significant predictor of delta six-
- 10 minute walk distance, where on the X axis, we have
- 11 delta PVRI change from baseline in PVRI, on the Y
- 12 axis, we have change in six-minute walk distance. And
- 13 I have binned the observations for 1,096 observations,
- 14 both active and control patients, into 10 different
- bins, where each bin represents 100 subjects and each
- 16 point represents the median delta PVRI for that bin
- 17 and its corresponding mean delta six-minute walk
- 18 distance for that bin.
- The arrow bars represent the 95 percent
- 20 confidence bound about the bin, and I also have a
- 21 regression showing that there is a relationship on the
- 22 regression, the linear regression. There is a

- 1 significant relationship, and the linear regression is
- 2 about all 1,096 subjects. It's not only the bins.
- 3 It's about all 1,096 subjects, showing that there is,
- 4 on average, a relationship. In addition, the
- 5 relationship is physiologically plausible. Where we
- 6 have an improvement of PVRI or a decrease in PVRI, we
- 7 see an improvement in exercise capacity.
- 8 We then want to evaluate this on a trial
- 9 level. What I have shown you here is a forest plot
- 10 looking at the 13 individual trials for the slope of
- 11 the delta six-minute walk distance versus delta PVRI.
- 12 Looking at the slope estimates, the black dot, and its
- 13 corresponding 95 percent confidence bound. On this, I
- 14 guess you could say this Y axis, it shows the number
- of subjects that were evaluated in each of the trials.
- 16 In addition, I have demarcated a black line showing a
- 17 zero slope. And for reference, I've kept the pooled
- 18 analysis, the estimate and the 95 confidence bound for
- 19 the pooled analysis up at the top.
- 20 Qualitatively, looking at this, you could
- 21 see that the direction within all 13 trials is the
- 22 same, meaning than an improvement in PVRI, we see an

- 1 improvement in six-minute walk distance. In addition,
- 2 you could look quantitatively, that for the most part,
- 3 the 95 percent confidence bounds are overlapping,
- 4 suggesting that the slopes are indistinguishable.
- 5 In addition, looking at it more through a
- 6 therapeutic mechanism of action, I've also categorized
- 7 these looking at the prostacyclins, endothelin
- 8 receptor antagonists, PDE5 inhibitors. In addition,
- 9 the patients are randomized to control. Also, for
- 10 reference, the pooled analysis, looking at the slope
- 11 estimate and its 95 percent confidence interval about
- 12 that slope estimate, again, qualitatively, you could
- 13 see that they're falling, on average, in the same
- 14 direction. Where we have the improvement in PVRI, we
- 15 see the improvement in six-minute walk distance.
- In addition, for the most part, the 95
- 17 percent confidence intervals are overlapping,
- 18 suggesting that this relationship holds despite the
- 19 mechanism of action, despite treatment. Regardless of
- 20 the treatment that's given, this relationship still
- 21 holds.
- 22 So the conclusions of our analysis is we

1 think, one, that the treatment-induced changes in PVRI

- 2 is able to explain the treatment-induced changes in
- 3 delta six-minute walk distance. In addition, we see,
- 4 on average, that delta PVRI shows a significant and
- 5 consistent relationship with exercise capacity in
- 6 adults, and it's amongst all 13 trials, seven
- 7 different drugs, three different drug classes.
- 8 In addition and I think what's most
- 9 important is that the relationships are
- 10 physiologically plausible. Where we see an
- 11 improvement in PVRI, we see an improvement in six-
- 12 minute walk distance.
- The final question we wanted to ask is,
- 14 okay, what do we do with this information that we
- 15 have. How can we use the adult hemodynamic and
- 16 exercise capacity information to design pediatric
- 17 clinical trials? First and foremost, we think that
- 18 the PVRI measure can be used for a basis of approval
- 19 in pediatric trials.
- 20 Let me stipulate we want to use this for PAH
- 21 therapies that are already approved in adults, not
- 22 only because we saw that the delta PVRI shows a

- 1 relationship to exercise capacity in adult patients,
- 2 but, in addition, PVRI is used for diagnosis of PAH in
- 3 both adults and pediatrics. PVRI is a significant
- 4 predictor of survival in adults based on the REVEAL
- 5 registry. Also, the pulmonary vasculature is the
- 6 target for PAH therapies as PDE5 enzymes within the
- 7 pulmonary vasculature, we have also the prostacyclin
- 8 receptors and the endothelin receptors that are
- 9 involved within the pulmonary vasculature.
- 10 So, one, we think that the delta PVRI
- 11 measure should be used for pediatric patients. In
- 12 addition, we think we could use the relationship, the
- 13 adult relationship, to target a particular PVRI effect
- 14 size. For instance, if we have a particular meter
- 15 difference that we are trying to target over placebo,
- 16 what would the corresponding relationship -- using
- 17 this relationship, what would the corresponding PVRI
- 18 over placebo, what we would need?
- In essence, as well, on the next slide, I
- 20 have just -- for discussion later, we could look at
- 21 different effect sizes that we're trying to target for
- 22 six-minute walk distance and its corresponding effect

1 size that we would see for PVRI. For instance, if we

- 2 were trying to target a 10-meter difference over
- 3 placebo, our corresponding PVRI that we're trying to
- 4 target would be around 212.
- 5 In addition, I also want you to know that we
- 6 could use this relationship based on the percent
- 7 scale. Again, I've included an addendum to the
- 8 backgrounder showing that the relationship still holds
- 9 if we're looking at the percent change from baseline
- 10 in PVRI versus percent change in baseline for six-
- 11 minute walk distance. We still see a significant
- 12 relationship on the double delta plot, and, using this
- 13 relationship, we can come up with a particular target.
- 14 For instance, if we're trying to target a 10 percent
- in baseline over placebo, we would need about a 23
- 16 percent change over placebo in PVRI.
- 17 So what else can we use this relationship
- 18 for? We think that the relationship can be used to
- 19 guide pediatric drug development. And how? In adult
- 20 registration trials, we suggest, and it's already
- 21 done, that six-minute walk distance information and,
- 22 also, delta PVRI information be collected. And within

- 1 the adult trial, establish the relationship in the
- 2 adults, then we essentially specify -- using the
- 3 relationship, specify a particular target for PVRI
- 4 that we need.
- 5 Using that target, we can power our study
- 6 prospectively to look at, in a pediatric study, what
- 7 our target should be. And in our pediatric study, we
- 8 would run placebo-controlled dose-ranging studies to
- 9 perform to achieve different degrees of hemodynamic
- 10 benefit. And we could essentially come back to the
- 11 relationship to derive dosing based on the desired
- 12 benefit in exercise capacity.
- So I'd like to acknowledge a few people that
- 14 were involved with this project and gave me some input
- 15 and scientific input. And I'd like to accept any
- 16 questions. Thank you for your time.
- DR. KAUL: Thank you, Dr. Brar.
- We have 10 minutes for questions.
- 19 Dr. D'Agostino?
- 20 DR. D'AGOSTINO: That was very nicely
- 21 developed and presented. I do have one comment that
- 22 you may want to consider. I don't know if it'll

- 1 change the results too much, but all your analysis is
- 2 sort of internally fulfilling because you never let
- 3 one study say how well it would do in the other study.
- 4 You may want to go back and do some of the analysis
- 5 where you take the 13 studies, for example, drop one
- 6 study, see what function you get with the 12 studies,
- 7 how well does it predict the 13th study and just run
- 8 around that, keep dropping one study out at a time.
- 9 It's a fairly standard validation technique, and I
- 10 think it would reinforce what you have here. It would
- 11 also give you a better sense of the variability that
- 12 some of it's carrying here, because this is, as I say,
- 13 very much wish-fulfilling and it over-fits the data,
- 14 possibly. But if you're willing to do --
- DR. BRAR: So you're suggesting to do
- 16 something like a sensitivity analysis.
- DR. D'AGOSTINO: Well, it's actually even a
- 18 developmental analysis. You may want to develop the
- 19 function in this fashion.
- 20 DR. STOCKBRIDGE: Doesn't slide 12 address
- 21 your concern?
- 22 Can you put slide 12 back up?

```
DR. D'AGOSTINO: No, because, you see, this
```

- 2 is always taking the studies that you have and seeing
- 3 how well they fit themselves.
- 4 DR. STOCKBRIDGE: It's the next slide. Look
- 5 at the next slide. That's each individual study.
- DR. D'AGOSTINO: But again, the overall
- 7 combines them all. It doesn't say how well the first
- 8 12 predict the 13th. You can easily do it. This
- 9 gives you a lot of encouragement that what you're
- 10 doing is exactly right on target. It's to actually
- 11 get this sort of validation. You do find -- I'm
- 12 sorry. You were saying?
- DR. NEATON: I totally agree with Ralph.
- 14 This is helpful. This is at the individual patient
- 15 data. Go back to the delta-delta slide. That's kind
- 16 of, I think, what Ralph is referring to. The slide
- 17 with --
- DR. BRAR: The double delta?
- DR. NEATON: The double delta.
- 20 So I think the typical -- this would give
- 21 you some idea of its application. So drop one of
- 22 these studies at a time, refit this model, and then

- 1 apply it to the study and see how it compares with
- 2 what you observed, because if you repeatedly do that,
- 3 that will give you some notion of how well your model
- 4 is going to work and, also, the confidence around, the
- 5 predicted confidence level.
- 6 DR. D'AGOSTINO: Again, these are all --
- 7 you're looking at it internally, but all of these
- 8 predictive models and what have you, this is what
- 9 we're saying is just very standard methodology.
- 10 There's nothing clever about it.
- DR. KAUL: The technical term is
- 12 calibration. So you want to make sure that your
- 13 predicted variables fit well with the observed
- 14 variables.
- I am next in asking the questions.
- 16 So did you have information about the other index
- of exercise capacity, which is the VO2 peak in adults,
- 18 and did you construct a similar relationship? Because
- 19 the key issue at hand is that we have the VO2 peak
- 20 data in children and to see how well we can
- 21 extrapolate this relationship that we observe in the
- 22 adults to the children.

```
DR. BRAR: From the entirety of data that we
```

- 2 have at the FDA, I could only recall a very few number
- 3 of trials that actually looked at peak VO2 in adults.
- 4 Most of the information I saw was based on six-minute
- 5 walk distance, and because that is the primary
- 6 endpoint that's used in PAH trials, that is the one
- 7 that we chose. But we do have -- I think it's limited
- 8 data on peak VO2 information.
- 9 DR. KAUL: Thank you.
- 10 Dr. McGuire?
- DR. MCGUIRE: I wonder if you might comment
- on how much this association you've observed may be
- 13 biased by the exclusion of data from study drugs that
- 14 did not meet approval criteria. That is, in reviewing
- 15 these drugs, they've all had to show both improvements
- in hemodynamics and performance. And so you're
- 17 effectively contriving this association, and it's
- 18 represented here by the complete absence in any of the
- 19 other three quadrants. So to come to market, you
- 20 would have to have both hemodynamic and performance
- 21 measures met.
- I wonder if there are data from drugs

- 1 developed, but not approved, where a discordance
- 2 existed; and if that's the case, that would be a
- 3 strong disincentive to accept this as an intermediate
- 4 marker of surrogacy.
- 5 DR. BRAR: I agree. With the data that I've
- 6 seen thus far in the large trials that have this type
- 7 of hemodynamic and six-minute walk distance
- 8 information, we only have some data coming in from the
- 9 failed trials, the big, large failed trials that
- 10 evaluated six-minute walk distance and hemodynamics.
- 11 So I will take a look at that.
- DR. MCGUIRE: And just very quickly, have
- 13 you observed any disconnects?
- DR. BRAR: Thus far, no, I have not. And I
- 15 think also what I'd like to show you maybe will give
- 16 you some information about this, is looking at the
- 17 control patients; the control patients who did not see
- 18 a benefit in either exercise capacity or hemodynamic
- 19 information, where essentially the slope relation with
- 20 the control patients is similar to that of the active.
- 21 DR. KAUL: Thank you.
- 22 Dr. Veltri?

```
DR. VELTRI: Very nice work. A quick
```

- 2 methodologic question. I understand this is really a
- 3 completer's analysis, and last observation carried
- 4 forward kind of excluding. And I noticed in a
- 5 briefing document, you started about 2,000 patients
- 6 and you ended up with 1,000. Some of those were non-
- 7 WHO Group 1.
- 8 DR. BRAR: Correct.
- 9 DR. VELTRI: So did you do a sensitivity
- 10 analysis? Because there could have been some reason
- 11 why -- even if you had paired readings, but they
- 12 didn't get to a completers -- that could help or
- 13 dissuade.
- DR. BRAR: Unfortunately, a lot of the
- 15 trials that we looked at -- so there's a total of
- 16 about 42 trials that we have at the FDA that had
- 17 information. Unfortunately, not all of them have
- 18 hemodynamic measures. Most of these use one point in
- 19 time, which is at baseline and end of therapy.
- 20 So if the patients did not have an end-of-
- 21 therapy measure, I did not want to extrapolate from
- 22 baseline up to -- essentially from baseline. So this

```
1 is essentially completer information, and we want to
```

- 2 see more physiologically. Without extrapolation,
- 3 we're using last observation carried forward, if this
- 4 relationship holds physiologically. That was our
- 5 intent.
- DR. KAUL: Thank you.
- 7 Dr. Rich?
- 8 DR. RICH: Yes. Can you go back to your
- 9 slide 12? So am I interpreting this correctly that
- 10 you have here an improvement in six-minute walk in
- 11 subjects where the PVRI actually went up? Am I
- 12 interpreting this correctly?
- DR. BRAR: The PVRI --
- DR. RICH: The delta PVRI, you're saying
- 15 that a positive value going to the right of zero.
- DR. BRAR: Okay. To the right of zero.
- 17 DR. RICH: Yet the six-minute walk still
- 18 improved.
- DR. BRAR: Yes. So you're asking about kind
- 20 of like what's happening here with this intercept,
- 21 correct?
- DR. RICH: Right. Well, I see it's saying

- 1 that there were cases where the PVRI was actually
- 2 worse, when we say higher, and yet the six-minute walk
- 3 still improved.
- DR. BRAR: And I could attribute this to a
- 5 training effect. So what I think -- and I'm putting
- 6 it in my terms -- where we actually see a positive
- 7 intercept on this relationship, a positive Y
- 8 intercept, where if we don't see a change in PVRI, we
- 9 actually have a change in six-minute walk distance.
- 10 And what I want you to gather is that this is active
- 11 and control patients all combined together, where
- 12 we're looking at here is essentially somewhat of a
- 13 training effect that's only seen in six-minute walk
- 14 distance.
- Upon looking at the double delta plot, if
- 16 you could see the relationship, we have a zero
- 17 intercept accounting for placebo and I think also
- 18 accounting for the training effect that's seen.
- DR. KAUL: Thank you.
- 20 Dr. Kawut?
- DR. KAWUT: Very nice presentation. I
- 22 wanted to know if you looked at some traditional

1 measures of surrogacy such as the proportion of

- 2 treatment effect --
- 3 DR. BRAR: Proportion explained?
- 4 DR. KAWUT: -- accounted for by the
- 5 surrogate. And then a second question is, it strikes
- 6 me as a little funny that we're looking at a surrogate
- 7 to predict an intermediate endpoint rather than using
- 8 a surrogate to look at a definitive endpoint, such as
- 9 time to lung transplantation or time to death.
- Have you done that work, as well?
- DR. BRAR: I have not looked at the
- 12 evaluation of these hemodynamics as it relates to
- 13 harder endpoints such as death or transplant.
- 14 Unfortunately, the number of trials that we've had
- 15 that had this information, the PVRI information,
- 16 essentially, the information that we have would not
- 17 conclude any significant results based on the data
- 18 that we have.
- DR. KAUL: Thank you.
- 20 Dr. Krantz?
- DR. KRANTZ: I loved your presentation. I
- 22 particularly liked the delta-delta. It reminds me of

- 1 TQT studies. But one quick question in terms of the
- 2 sensitivity analysis. Did you look at just the
- 3 studies that were double-blind, randomized, controlled
- 4 and look at that and was it consistent?
- 5 DR. BRAR: Yes.
- DR. KRANTZ: And then the second question is
- 7 in terms of the TQT, did you look at proportional
- 8 thresholds in terms of those that had a meaningful
- 9 increase in six-minute walk as an analysis?
- DR. BRAR: You know what? First and
- 11 foremost is trying to figure out what that meaningful
- 12 change is. I think amongst the PAH community, trying
- 13 to figure out what a meaningful change in six-minute
- 14 walk distance means, also how it relates to PVRI.
- 15 That's one thing I think we should also discuss is
- 16 this particular treatment effect size.
- So to answer your question, essentially, is
- 18 to look at what is that threshold that we're trying to
- 19 target. And I kind of also want to discuss today what
- 20 we should be looking at in terms of that threshold.
- 21 Once we come up with some consensus on that
- 22 threshold, then I would run some type of analysis on

- 1 it.
- DR. KAUL: Thank you. We will deliberate on
- 3 that this afternoon.
- 4 One last question before the sponsor's next
- 5 presentation.
- 6 Dr. Neaton?
- 7 DR. NEATON: Thank you. Nice presentation.
- 8 I have several questions we'll come back to this
- 9 morning, but one simple one. If you were to make a
- 10 decision based on a nominal significance level of .05,
- 11 what concordance is there in these 13 trials between
- 12 using these two outcomes?
- DR. BRAR: So doing --
- DR. NEATON: Suppose your endpoint was
- 15 change in PVRI versus change in six-minute walk,
- 16 what's the level of concordance in that decision-
- 17 making process for the trials that you looked at here?
- 18 DR. BRAR: Based on the trials that we have,
- 19 you're talking about the approvability concordance?
- DR. NEATON: Typically, faced with the trial
- 21 that's kind of set up with a design around a nominal
- 22 significance level of .05, had you applied that level

- 1 to these trials and used six-minute walk as the
- 2 outcome versus using change in PVRI as an outcome?
- 3 What's the level of concordance? Would you have made
- 4 the decision the same in all the trials?
- 5 DR. BRAR: Okay. So I did somewhat of an
- 6 analysis looking at the individual doses, essentially,
- 7 the final results from each of the trials, and
- 8 compared them to the results that we see on this
- 9 double delta plot. And essentially, there was
- 10 concordance between what was originally stated in the
- 11 label and what we see essentially on here. Is that
- 12 what you mean by the concordance?
- 13 DR. NEATON: Is the difference in treatment
- 14 groups and change in PVRI significant at the .05
- 15 levels in all the trials?
- DR. BRAR: In all trials, they are. In all
- 17 trials, they are.
- DR. KAUL: For both the variables?
- DR. BRAR: For both variables.
- DR. KAUL: Thank you.
- 21 At this point, I'd like to invite Nancy
- 22 McKay to give her presentation.

```
1 MS. MCKAY: Good morning. I'd like to start
```

- 2 our sponsor presentation today by thanking the FDA and
- 3 their advisory committee for inviting Pfizer to
- 4 present sildenafil data at today's meeting.
- 5 My name is Nancy McKay. I'm the U.S.
- 6 regulatory lead for Revatio, and I'm going to give an
- 7 introduction of regulatory history beginning to
- 8 describe some of the learnings we've had along the way
- 9 during the sildenafil development program.
- 10 My introduction will be followed by a
- 11 presentation given by Dr. Colin Ewen, who will present
- 12 the sildenafil adult and pediatric PAH development
- 13 program. Dr. Ewen's presentation will be followed by
- 14 Dr. Lutz Harnisch, who will present a model-based
- 15 approach to the integration of adults and pediatric
- 16 data with sildenafil. Dr. Ewen will return for
- 17 closing remarks.
- 18 We're delighted to be here today to
- 19 contribute to the discussions of the treatment of
- 20 children with PAH. As Dr. Barst mentioned in her
- 21 presentation, there are no currently approved
- 22 treatments in PAH for children. This is partly

1 because there are no agreed endpoints for clinical

- 2 trials.
- We're here today to show you data from our
- 4 adult sildenafil program which resulted in approval
- 5 based on exercise capacity and has contributed to our
- 6 understanding of sildenafil use in children with PAH.
- 7 We'd also like to describe for you the first pediatric
- 8 development program in children with PAH, which
- 9 includes a randomized controlled trial in children.
- The study of sildenafil in children has been
- 11 a learning process for us at Pfizer, and we'd like to
- 12 acknowledge our continued collaboration with FDA
- during the process to help suggest potential ways
- 14 forward during the development.
- 15 I'd like to walk you through a brief
- 16 regulatory history for Revatio, which is a PDE5
- 17 inhibitor for the treatment for PAH. The IND for
- 18 Revatio was first submitted in August of 2001. We
- 19 thought it was important to study children with PAH
- 20 early during the development program, and FDA issued a
- 21 pediatric written request in December of 2001. The
- 22 adult development program for sildenafil, which was

- 1 conducted in parallel, initiated in October of 2002.
- 2 The pediatric study A1481131, which is the main topic
- 3 of our sponsor presentation today, began in August of
- 4 2003. In the meantime, adult data continued to
- 5 accrue. We submitted an NDA for adults, which received
- 6 approval based on exercise capacity in June of 2005.
- 7 With the continued study of Revatio, the
- 8 addition of a delay in clinical worsening claim was
- 9 added to the labeling in May of 2009. With that
- 10 addition of delay in clinical worsening claim, we
- 11 thought it was important to look at alternative
- 12 formulations for sildenafil for patients who are
- 13 temporarily unable to take tablets. That IV
- 14 formulation was approved in November of 2009.
- The study of sildenafil in children has been
- 16 a learning process for us, and sildenafil has become
- 17 the standard of care in adults with PAH, with over
- 18 60,000 patients treated to date.
- 19 During the development program for
- 20 sildenafil, we've worked very closely with FDA, and
- 21 we've learned quite a lot over the years of
- 22 development. We look forward to the submission of our

- 1 pediatric NDA, which is currently under preparation.
- 2 The adult information I described in the
- 3 previous slide has contributed to the Revatio labeling
- 4 and the indication you see here on the screen.
- 5 Revatio is indicated for the treatment of PAH Who
- 6 Group 1 to improve exercise ability and delay clinical
- 7 worsening. The delay in clinical worsening was
- 8 demonstrated when Revatio was added to background
- 9 epoprostenol therapy.
- 10 As mentioned in Dr. Stockbridge's
- 11 presentation, the original sildenafil development
- 12 program for children and, therefore, the original
- 13 written request, consisted of a full-blown development
- 14 program. This was because we had not yet studied
- 15 sildenafil in adults, and so very little was known
- 16 about the clinical benefits of sildenafil in PAH at
- 17 that time.
- 18 The program consisted of the studies you see
- 19 here, a study for chronic treatment of PAH with a
- 20 long-term extension; a placebo-controlled withdrawal
- 21 study to show durability of treatment effect; and, two
- 22 specialty studies, one for postoperative congenital

1 heart disease and one for persistent pulmonary

- 2 hypertension of the newborn, PPHN.
- 3 Changes often occur during development
- 4 programs, and for pediatric programs, that means
- 5 changes are needed to written requests, as
- 6 Dr. Stockbridge mentioned. That was certainly the
- 7 case for sildenafil. So I'd like to describe for you
- 8 the clinical amendments to the sildenafil written
- 9 request.
- 10 If I can focus you on the bottom of the
- 11 screen, you'll see the two specialty studies I
- 12 mentioned for postoperative congenital heart disease
- 13 and PPHN were removed from the sildenafil written
- 14 request in 2005 by agreement between FDA and Pfizer.
- 15 This was due to a change in treatment paradigm that
- 16 resulted in difficulties enrolling patients.
- Moving up the screen, the need for placebo-
- 18 controlled withdrawal study was satisfied when we
- 19 submitted and received approval for a time to clinical
- 20 worsening claim for Revatio in 2009.
- 21 That still left us with the largest
- 22 pediatric program ever conducted in this patient

- 1 population. The A1481131 study and its long-term
- 2 extension was a difficult study to conduct. We
- 3 conducted this study in 16 countries, and it took us
- 4 almost five years to do it. There are 234 patients in
- 5 this study, and it's the only randomized controlled
- 6 trial in this patient population.
- 7 It's Pfizer's belief that we've conducted a
- 8 study that informs the treatment of children with PAH
- 9 with this study. We look forward to the discussions
- 10 at the meeting today to help inform future discussions
- 11 with FDA toward the appropriate amendment of the
- 12 sildenafil written request.
- 13 Specific to today's discussions on
- 14 hemodynamics as an efficacy endpoint, it's important
- 15 to remember that adult and pediatric Revatio programs
- 16 were designed to evaluate sildenafil efficacy using
- 17 exercise capacity and hemodynamic measures including
- 18 PVRI. We believe that PAH is a similar disease in
- 19 adults and children.
- The presentation of data that follows this
- 21 one will show that changes in exercise capacity are
- 22 associated with changes in hemodynamics, particularly

- 1 PVRI, and the data will support the use of PVRI as an
- 2 endpoint in children with PAH to inform labeling where
- 3 a drug has documented to improve exercise capacity in
- 4 adults. These data support inclusion of hemodynamics
- 5 in the sildenafil written request.
- 6 I'd now like to introduce Dr. Colin Ewen,
- 7 who will give a presentation on the sildenafil adult
- 8 and pediatric PAH program.
- 9 Dr. Ewen?
- DR. EWEN: Good morning, ladies and
- 11 gentlemen. My name is Dr. Colin Ewen. I'm an
- 12 executive director in the specialty care business unit
- in Pfizer, and I'm located at Pfizer Laboratories in
- 14 Sandwich in the United Kingdom.
- 15 I've had the honor and the privilege of
- 16 being the development team leader in the sildenafil
- 17 pulmonary arterial hypertension program since we
- 18 initiated the full development program in 2001. And I
- 19 hope that the data I'm going to show you will be
- 20 informative for today's discussions.
- 21 So far, I think we've heard that using adult
- 22 data to inform treatment in children is precedented in

1 a number of disease areas. I think we've also heard

- 2 that changing a written request is possible and,
- 3 indeed, may be necessary as new information becomes
- 4 available. We've also heard from Dr. Barst that not
- 5 all children can undertake exercise testing and that
- 6 the hemodynamics is, however, used in the prognosis,
- 7 diagnosis and evaluation of all children of all ages
- 8 with pulmonary arterial hypertension. And we've just
- 9 heard from Dr. Brar that in adults a correlation
- 10 exists between improvements in exercise capacity and
- 11 pulmonary vascular resistance.
- The question before us is how can these data
- 13 be used to inform the treatment of pediatric PAH
- 14 patients. So the objectives of my presentation are,
- 15 first of all, I'd like to review the key exercise and
- 16 hemodynamic data from the adult sildenafil program,
- demonstrating the relationship between endpoints in
- 18 terms of exercise capacity and pulmonary hemodynamics,
- 19 and I hope to set the context for the later discussion
- 20 around the pediatric data.
- 21 I'm then going to move on to talk about the
- 22 exercise and hemodynamic data from the pediatric

- 1 program, again, demonstrating the relationship between
- 2 these two endpoints, before spending the last few
- 3 minutes of the presentation talking about the
- 4 consistency of treatment effects and the relationship
- 5 between exercise, hemodynamics and exposure in adults
- 6 and children with pulmonary arterial hypertension.
- 7 The initial studies with sildenafil and the
- 8 treatment of pulmonary arterial hypertension were
- 9 started in 1998, and in 2001, we initiated the full
- 10 development program. And this resulted in the initial
- 11 approval of sildenafil from proven in exercise
- 12 capacity in adults with pulmonary arterial
- 13 hypertension in 2005, and the indication was updated
- 14 further in 2009.
- 15 At the same time as we initiated the adult
- 16 development program and in response to an FDA written
- 17 request, Pfizer initiated a comprehensive pediatric
- development program in 2002. We received the written
- 19 request in late December 2001 and began planning for
- 20 the program in 2002. And as was stated by Ms. McKay,
- 21 this included the first placebo-controlled, indeed,
- 22 the only placebo-controlled randomized study in

- 1 pediatric PAH.
- The pediatric program has now completed
- 3 recruitment, and I hope to provide informative data on
- 4 the use of sildenafil in children with PAH. And I
- 5 think overall, the sildenafil PAH program informs the
- 6 discussion about the potential utility of PVRI as an
- 7 endpoint in pediatric PAH.
- 3 Just a minute or two on the mechanism of
- 9 action of sildenafil and as it relates to pulmonary
- 10 arterial hypertension, following oxygenation, alveolar
- 11 ventilation, nitric oxide synthase increases levels of
- 12 nitric oxide, which in turn results in increased
- 13 levels of CGMP. CGMP initiates pulmonary
- 14 vasodilatation and results in the reduction of
- 15 pulmonary vascular resistance and other hemodynamic
- 16 improvements in the lung.
- 17 Levels of CGMP are regulated by
- 18 phosphodiesterase 5, which acts to rapidly break down
- 19 CGMP, and the role of sildenafil, a phosphodiesterase
- 20 5 inhibitor, is to inhibit this degradation,
- 21 therefore, maintaining levels of CGMP and maintaining
- 22 pulmonary vasodilatation.

- 1 We've conducted a number of studies in the
- 2 sildenafil development program, but I'm just going to
- 3 concentrate today on three studies. Two of these
- 4 studies were conducted in adults, and one of these
- 5 studies was conducted in children. The two adult
- 6 studies are shown at the top of this slide. A1481140
- 7 was conducted in treatment-naïve patients and was the
- 8 single pivotal study which resulted in the initial
- 9 approval of sildenafil.
- 10 We recruited 277 patients into this study.
- 11 A1481141 was a randomized-controlled study in patients
- 12 who were already receiving intravenous epoprostenol,
- and both of these studies had long-term extension
- 14 studies associated with them. A1481141 recruited 265
- 15 patients.
- I'll talk you through some of the key data
- 17 from these studies before going on to talk to you
- 18 about the data from A1481131, and this was a study
- 19 which we conducted in treatment-naïve children with
- 20 PAH. This study also has a long-term extension study
- 21 associated with it, and we recruited 234 patients in
- 22 this study.

- 1 The endpoints which we used in the
- 2 sildenafil program are widely accepted within the PAH
- 3 community and indeed by regulatory agencies as
- 4 reflecting efficacy of new treatments for pulmonary
- 5 arterial hypertension. In our program, we've looked
- 6 at exercise capacity, change in hemodynamics, time to
- 7 clinical worsening, change in functional class, and
- 8 quality of life. But for the purposes of today's
- 9 discussion, I'm just going to concentrate looking at
- 10 the data on exercise capacity and change in
- 11 hemodynamics.
- 12 Exercise capacity has been the primary
- 13 endpoint for all three studies I've just discussed or
- 14 just mentioned. For adults, we've used six-minute
- 15 walk distance as a primary endpoint, and in children,
- 16 we used cardiopulmonary exercise testing.
- 17 This next slide shows the data from the
- 18 original study A1481140 in adults. And you can see
- 19 here's the changing walk distance assessed at week 4,
- 20 week 8 and week 12. We studied three doses of
- 21 sildenafil in the study, sildenafil 20, 40 and 80
- 22 milligrams TID, and these are reflected in the green,

- 1 yellow and blue bars. Placebo is shown in red.
- 2 You can see it here, at the primary
- 3 endpoint, which is assessed at week 12, a highly
- 4 statistically significant improvement in exercise
- 5 capacity in the patients receiving sildenafil.
- 6 If we go on to look at the corresponding
- 7 hemodynamic data in terms of improvements in pulmonary
- 8 vascular resistance and the improvements in mean
- 9 pulmonary arterial pressure, again, using the same
- 10 dosing regimen and the same color schemes, you can see
- 11 that the pulmonary vascular resistance index and
- 12 pulmonary arterial pressure, you can see important
- 13 reductions in these parameters in the patients being
- 14 treated with sildenafil.
- So in the first, I think we saw improvements
- in exercise capacity and improvements in pulmonary
- 17 hemodynamics, specifically pulmonary vascular
- 18 resistance pulmonary arterial pressure. In the second
- 19 study, we used similar endpoints, and these are the
- 20 data from the Study A1481141 in which patients were
- 21 already receiving IV epoprostenol. Patients were
- 22 randomized to receive placebo or epoprostenol plus

- 1 sildenafil. And patients in this study were up
- 2 titrated to receive 80 milligrams TID of sildenafil.
- 3 The primary endpoint was, again, improvement
- 4 in exercise capacity using the six-minute walk
- 5 distance test. And again, you can see at week 16,
- 6 when the primary endpoint was assessed, a highly
- 7 statistically significant improvement in exercise
- 8 capacity. And again, in this study when we look at
- 9 improvements in hemodynamics, you see a similar
- 10 picture to that seen in the previous study, A1481140,
- 11 significant improvements in pulmonary vascular
- 12 resistance and pulmonary arterial pressure in this
- 13 study. And in this study, we only had the one dose
- 14 group to assess, and, therefore, that's why there's
- only one, if you like, 80-milligram group displayed on
- 16 this graph.
- 17 So we now have two studies demonstrating
- 18 improvements in exercise capacity and improvements in
- 19 pulmonary vascular resistance index. If you look at
- 20 these data in a slightly different manner, if you plot
- 21 mean change in pulmonary vascular resistance against
- 22 percent change in exercise capacity -- although I'm

- 1 using percent change in this slide rather than
- 2 absolute change, because I was going to go on later on
- 3 in the presentation to compare these data with the
- 4 pediatric program -- you can see, again, here the
- 5 placebo group is in red, sildenafil 20, 40 and 80
- 6 milligram, again, shown in yellow, green and blue.
- 7 And you can see for the two blue crosses relating to
- 8 80 milligrams TID, these from the two studies, the two
- 9 of which I've just described.
- 10 But importantly, I think you can see the
- 11 development, if you like, of a relationship or
- 12 appearance of a relationship between improvement in
- 13 exercise capacity and improvement in pulmonary
- 14 vascular resistance index. These two studies led to
- 15 the indication, which has already been shown to you by
- 16 Ms. McKay, but what I hope they do is provide some
- 17 context and some background now for the pediatric data
- 18 which I'm about to show you.
- 19 What I'd like to do, just to reiterate, is
- 20 to review the key exercise and hemodynamic data from
- 21 the pediatric program and demonstrate to you the
- 22 relationship between exercise and hemodynamic

- 1 endpoints in this patient population. This study
- 2 we're going to discuss is A1481131, a randomized,
- 3 double-blind, placebo-controlled, dose-ranging,
- 4 parallel group study in oral sildenafil in treatment-
- 5 naïve children. It is and remains, I think, the only
- 6 randomized controlled clinical trial conducted in this
- 7 pediatric patient population. I think we can regard
- 8 this as a landmark study. We assessed different
- 9 doses, and we explored the effects of sildenafil
- 10 across the whole pediatric patient population age
- 11 range.
- 12 This study design is shown on this slide
- 13 here. Patients underwent screening within 21 days of
- 14 randomization and then went on to be randomized to one
- of four treatment groups: placebo, sildenafil low
- 16 dose, sildenafil medium dose, and sildenafil high
- 17 dose. The first week of the study, patients received
- 18 sildenafil low dose before up-titrated as appropriate
- 19 for their treatment dose, and the primary endpoint was
- 20 assessed at week 16. Patients completing the study
- 21 were able to go on to the long-term safety extension
- 22 study.

1 The patient disposition is shown on this

- 2 slide. We screened 308 patients during the
- 3 approximately five years' duration of this study. 234
- 4 of these patients went on to be treated in this study
- 5 and, as I said, were allocated to one of four
- 6 treatment groups: placebo, low, medium and high dose.
- 7 You can see in the boxes underneath each of these
- 8 treatment groups the numbers of patients who were
- 9 treated, the numbers of patients who completed 16
- 10 weeks of treatment, and the numbers of patients who
- 11 underwent the primary exercise testing endpoint.
- 12 The primary endpoint in this study was
- 13 cardiopulmonary exercise testing, and 115 of the 234
- 14 children randomized into this study were able to
- 15 undertake this exercise test, and we termed these
- 16 children developmentally able. We anticipated at the
- 17 outset of the study that at least 70 percent of the
- 18 patients would undertake the primary endpoint.
- 19 However, as you can see, it's nearer to 50 percent of
- 20 the children evaluable for the primary endpoint.
- The primary endpoint was increase in oxygen
- 22 consumption at peak exercise, otherwise termed percent

- 1 change in VO2 peak. It was assessed at week 16 and
- 2 was assessed for the combined doses of sildenafil.
- 3 At the outset of the study, we were aware of
- 4 the potential difficulties associated with conducting
- 5 multi-national, multi-center studies using
- 6 cardiopulmonary exercise testing, particularly in
- 7 children. And we were assisted in this using a
- 8 central laboratory run by Dr. Stuart Russell of Johns
- 9 Hopkins University, and the central lab played a key
- 10 role in standardization of protocols, review of data,
- 11 and ensuring quality and training at all the sites
- 12 that participated in the study.
- Just to explore the patient population in a
- 14 little bit more detail, as I've stated already, less
- 15 than 50 percent of children recruited to the study
- 16 were able to perform the exercise test, 115 of the 234
- 17 patients. We also found that in terms of the patients
- 18 who were unable to undertake the exercise test, 63
- 19 were less than 7 years of age. But we also found that
- 20 56 children, nearly a quarter of the patient
- 21 population, were older than 7 years of age but had
- 22 other reasons for being unable to perform the exercise

- 1 test.
- 2 I think the difficulties associated with
- 3 recruitment to this study are shown by the fact that
- 4 we had 14 active centers in Canada, the United States
- 5 and Mexico. And during the five years of this study,
- 6 we were only able to recruit 25 developmentally-able
- 7 patients in the North American region.
- 8 These data show the hemodynamic values, if
- 9 you like, in healthy children and in children
- 10 recruited into A1481131. We're looking at the
- 11 hemodynamic and exercise baseline parameters here. In
- 12 terms of VO2 peak, you can see the normal range for
- 13 healthy children is 30 to 35 mils per kilogram per
- 14 minute. The children recruited in this study
- 15 certainly had significant exercise impairment
- 16 demonstrated by baseline VO2 peaks of 20 and 18. And
- in terms of the pulmonary hemodynamics, you can see
- 18 that in terms of pulmonary arterial pressure and
- 19 pulmonary vascular resistance index, a considerable
- 20 elevation over normal values.
- 21 You can see, looking at these data, that in
- 22 terms of these parameters, the placebo group appeared

1 to be doing slightly better than the sildenafil-

- 2 treated group.
- 3 These data show the primary endpoint, which,
- 4 as I've stated, was improvement in exercise capacity,
- 5 percent change in VO2 peak at week 16. The data for
- 6 all three doses is shown, again, low, medium and high
- 7 in green, yellow and blue. But I'd like you to just
- 8 concentrate on the highlighted blue box. You can see
- 9 here that these are the primary analyses looking at
- 10 the combined doses where we saw a 7.71 percent
- 11 increase in VO2 peak at week 16. This just missed
- 12 conventional measures of significance with a p-value
- 13 of 0.056.
- Now, at the outset of the presentation with
- 15 relation to the pediatric data, I mentioned this was a
- 16 dose ranging study. And indeed, we've looked in some
- 17 detail at the doses used in this study and compared
- 18 the doses or the concentrations, rather, seen in the
- 19 adult study. If you look at the top box of this
- 20 slide, you can see the individual average steady state
- 21 concentrations in nanograms per mil for sildenafil in
- 22 the adult population. The top boxes are green is 20

- 1 milligrams TID, yellow is 40 milligrams TID, and blue
- 2 is 80 milligrams TID. And in the bottom box, you can
- 3 see the, again, steady state nanograms per mil
- 4 concentrations for low, medium and high doses in
- 5 children in the Study A1481131.
- 6 If I overlay this slide with the
- 7 pharmacologically active range which we determined at
- 8 the outset of the pediatric study using in vitro PDE5
- 9 inhibition data, you can see here that the low dose
- 10 group in the pediatric population had median
- 11 concentrations which were below the IC50 of 47
- 12 nanograms per mil.
- 13 If you allow us to speculate that these
- 14 patients and these children, therefore, received
- 15 suboptimal doses of sildenafil and we go on in a post
- 16 hoc manner to look at the effects seen in the medium
- 17 and high doses, you can see here that overall, we see
- 18 a treatment effect which approaches a 10 percent
- 19 improvement in VO2 peak, and the 95 percent confidence
- 20 intervals for this analysis don't cross the zero line.
- Now, what I'd like to do is just change
- 22 gears somewhat and go on to talk about the hemodynamic

- 1 data that we have generated in this study in children
- 2 with pulmonary arterial hypertension. As I mentioned,
- 3 at the outset of this study, we anticipated that not
- 4 all children would be able to perform the primary
- 5 endpoint of exercise testing. But in terms of
- 6 statistical support for this endpoint, we prespecified
- 7 that the main hemodynamic endpoints would be PVRI and
- 8 mean pulmonary arterial pressure. And 234 children
- 9 who were randomized to this study underwent right
- 10 heart catheterization, and we have week 16 data on 208
- 11 children. And these data, I think, are informative
- 12 for today's discussion.
- 13 When we look at them in terms of the main
- 14 secondary analysis of this study, at the top of this
- 15 graph, you can see pulmonary vascular resistance
- index, at the bottom, the data for mean pulmonary
- 17 arterial pressure. And again, same presentation of
- 18 dosage, low, medium and high, and the combined doses,
- 19 the combined doses are shown in the red line.
- 20 What you can see is the beginnings of
- 21 evidence of a dose-response effect for both PVRI and
- 22 pulmonary arterial pressure. And indeed, these

- 1 effects on these parameters are very similar in
- 2 magnitude to those seen in the adult program. And
- 3 when you look at the combined data, low, medium and
- 4 high for pulmonary vascular resistance index, you can
- 5 see the 95 percent confidence interval does not cross
- 6 the zero line.
- 7 I also mentioned, when looking at the
- 8 patient population recruited for this study, that a
- 9 number of the patients, 25 percent of the patients,
- 10 were less than 7 years of age and, therefore, were
- 11 unable to perform the exercise test. And when you
- 12 look at these data -- and I must emphasize that this
- is a post hoc exploratory analysis and the
- 14 interpretation of this study should rely on the
- 15 totality of the hemodynamic data generated in this
- 16 study.
- But in this analysis, you can see that the
- 18 children less than 7 years of age and children greater
- 19 than 7 years of age, it would appear to be that
- 20 there's a similar improvement in pulmonary
- 21 hemodynamics in this patient population.
- Now, you've seen this presentation already,

- 1 or this form of presentation already for the adult
- 2 data, and this, again, is the same presentation
- 3 showing change in mean pulmonary vascular resistance
- 4 plotted against percent change in exercise capacity.
- 5 And again, placebo in red, low dose in green, medium
- 6 dose in yellow, and the high dose in blue, and again,
- 7 I think you can see the beginnings of a relationship
- 8 here, which is that as you improve pulmonary vascular
- 9 resistance index, you see concomitant improvements in
- 10 exercise capacity.
- 11 So with that, that concludes that data I'm
- 12 going to review with you, particularly specifically to
- 13 the pediatric program. I'd now like to just take a
- 14 few minutes to demonstrate consistency of the
- 15 treatment effects and consistency of the relationship
- 16 between exercise capacity, hemodynamics and exposure
- 17 in adults and children with PAH in our sildenafil
- 18 development program.
- 19 These data show the consistent exercise
- 20 improvements from baseline in the pediatric and the
- 21 adult patient populations. I've shown here just the
- 22 data from the two studies, A11481131 in children and

- 1 A1481140, as these present treatment-naïve patient
- 2 populations.
- 3 You can see here the children shown in the
- 4 orange line and the adults in the blue line, and we've
- 5 plotted the improvements in exercise capacity as a
- 6 percent improvement in exercise capacity against the
- 7 median concentration of sildenafil. And I think you
- 8 can see from this graph here very similar response for
- 9 both patient populations.
- If we do the same analysis for improvements
- in pulmonary vascular resistance index using the same
- 12 studies and the same plot of change in PVRI against
- 13 median concentration, again, I think looking at these
- 14 data, you can see a consistent effect between the two
- 15 patient populations.
- If we go on to examine the data in terms of
- 17 exercise capacity for the patients in the adult Study
- 18 1140 who received 20 milligrams TID and the patients
- 19 in this Study 1131, the pediatric patient group, who
- 20 received medium and high doses, you can see the
- 21 percent change from baseline compared to placebo for
- 22 these doses in these patient populations is very

- 1 similar.
- 2 If you go on to perform a similar analysis
- 3 for PVRI using the same dose groups and the same
- 4 patients, you can see once again the improvements in
- 5 PVRI in the region of 20 percent and, again, these
- 6 bars overlaying each other.
- 7 These data, again, this is just a
- 8 combination of the two previous slides I've shown you,
- 9 where we've overlaid the pediatric data on top of the
- 10 adult data. And again, I think you can see a
- 11 consistent relationship between exercise capacity
- 12 improvement and pulmonary vascular resistance
- improvement in the two patient populations that we've
- 14 been discussing.
- So in conclusion, from the sildenafil
- 16 program, we've seen that in adults, efficacy of
- 17 sildenafil was demonstrated by improvements in six-
- 18 minute walk distance and improvements in pulmonary
- 19 vascular resistance index. And reflecting the
- 20 similarity of disease and the effect of sildenafil in
- 21 adults and children, similar improvements were seen in
- 22 exercise capacity and pulmonary vascular resistance in

- 1 the pediatric patient population. And we see evidence
- 2 of a consistent relationship between exercise capacity
- 3 and PVRI in both patient populations.
- 4 What I'd now like to do is hand over to
- 5 Dr. Lutz Harnisch, who will present further data on
- 6 this relationship.
- 7 DR. KAUL: Before you do that, we're going
- 8 to be breaking for about 15 minutes. We'll reconvene.
- 9 Actually, how long is this presentation
- 10 going to take?
- [No audible response.]
- DR. KAUL: Ten minutes? Why don't we finish
- 13 this presentation, and then we'll break. Thank you.
- DR. HARNISCH: Good morning, ladies and
- 15 gentlemen. My name is Lutz Harnisch. I'm the lead
- 16 pharmacometrician of the pediatric and adults
- 17 sildenafil PAH project. And I'd like to guide or take
- 18 you today through kind of a model-based integrated
- 19 analysis which takes the adult sildenafil data we have
- 20 at hand in the PAH population and put those data in
- 21 the context of the analysis as you have seen earlier
- 22 presented by Dr. Brar.

- I think I should acknowledge at the very
- 2 beginning that it was a very fruitful collaboration
- 3 and without actually being able to exchange the models
- 4 in between us, this analysis wouldn't have been
- 5 possible in the first place.
- The objectives, in general, are two-sided.
- 7 We want to show first that the adult data on the
- 8 relationship between PVR and six-minute walking
- 9 distance fit the correlation analysis the FDA has
- 10 partly presented today. And if we assume actually
- 11 exchangeability for the VO2 peak exercise capacity in
- 12 the pediatric population with the six-minute walking
- 13 distance endpoint in the adult population, then we
- 14 want to apply this dataset to a similar relationship
- 15 and ask the question whether they are consistent, as
- 16 well.
- Now, the key focus of today's discussion
- 18 will be what a PVR target response might be to predict
- 19 an exercise capacity improvement, and we want to see
- 20 this analysis in light of the adult data we have
- 21 obtained based on the target responses, response
- 22 ranges or target response ranges Dr. Satjit Brar has

- 1 presented earlier, and then, again, ask the question
- 2 whether the pediatric data fit the same picture,
- 3 meaning whether the target PVR response seen measured
- 4 in the pediatric population translates in to a similar
- 5 VO2 or exercise capacity endpoint response in this
- 6 population, the pediatric population.
- 7 I remind you just of a model. It's not
- 8 exactly the model Dr. Brar has shown you earlier, but
- 9 I remind you of an alternative model we exchanged
- 10 about the factual change from baseline in six-minute
- 11 walking distance and the factual change from baseline
- in PVR as presented here, and you see the parameter
- 13 estimates, the regression line we presented, and the
- 14 95 percent confidence interval, which is always one of
- 15 the results relating those two endpoints.
- 16 You can read out from the graph that a
- 17 change of 20 percent in PVR translates to about a 10
- 18 percent improvement in exercise capacity.
- Now, it wouldn't be entirely fair to compare
- 20 our sildenafil adult data against this model as it
- 21 stands because the analysis did already include the
- 22 sildenafil data in the first place. So what we asked

- 1 kindly the pharmacokinetics group to do for us is
- 2 actually to provide an analysis where the sildenafil
- 3 data has been taken out.
- If we switch to the next slide, then you see
- 5 that the relationship slightly changes. There is a
- 6 change in the slope and a slight change in the
- 7 intercept, but still, we conclude from this
- 8 relationship that about 20 percent change from
- 9 baseline in PVR translates to a 10 percent improvement
- 10 on the exercise capacity scale, measured here by the
- 11 six-minute walking distance.
- Now, this regression analysis could be
- 13 utilized now to construct a relationship between the
- 14 model and the data in the adult population. And on
- 15 the next graph, I show you here, again, a similar
- 16 representation of the data as Dr. Brar has shown you.
- 17 He binned the data from the two trials at hand, which
- 18 is 1140 and 1141; 1140, just to remind you, was the
- 19 dose-response trial; 1141, the background epoprostenol
- 20 trial.
- 21 The four dots correspond to four bins
- 22 representing 25 percent of the data binned by the

- 1 individual change from baseline in PVR, calculating
- 2 then the corresponding improvement or change in six-
- 3 minute walking distance and plotting those four dots
- 4 for each of the trials onto the regression line.
- Now, the regression line cannot be compared
- 6 directly with those four dots for each trial. One
- 7 would need to construct a prediction interval from the
- 8 FDA model, and that's what we did. That's the gray
- 9 area in the background. Utilize the model and
- 10 construct it for a bin size of about 30 subjects, an
- 11 interval, and you would conclude, in a way, success or
- 12 consistency between the model and the data. If you
- 13 have only eight dots, actually, all of them fall into
- 14 the interval which is nicely shown here.
- Now, you can follow the similar
- 16 methodological approach, assuming, again,
- 17 exchangeability between the exercise capacity endpoint
- 18 between pediatrics and adults and introduce the
- 19 pediatric dataset. And you see here those four dots
- 20 representing the 1131 trial.
- Now, since the trial is slightly smaller in
- the number of subjects where we have corresponding

- 1 endpoints and exercise capacity and PVR, the bin size
- 2 is about 24 subjects. Therefore, you would need to
- 3 enlarge the prediction interval slightly, but you see
- 4 it's not a big deal. And although the interval
- 5 changes, all dots would have been found in the smaller
- 6 interval already.
- 7 So from this presentation, we would conclude
- 8 here that the adult data and the pediatric data follow
- 9 each other, as well as fall in the prediction
- 10 boundaries or they follow the relationship the FDA has
- 11 actually assessed.
- Now, we are going to talk about the target
- 13 effect size and what actually a minimum PVR target
- 14 effect size should look like translating into a
- 15 meaningful improvement on the exercise capacity scale.
- 16 And Dr. Brar mentioned already that for that purpose,
- 17 a normalization or a reference to placebo needs to be
- 18 introduced. So we follow actually the model the FDA
- 19 has presented earlier on the double delta method by
- 20 subtracting the placebo response, because from this
- 21 relationship here, you read only out the change from
- 22 baseline translating it to a change from baseline.

- 1 And from the subsequent relationship shown to you
- 2 earlier, delta versus delta, then you can conclude or
- 3 construct an improvement over placebo which translates
- 4 into an exercise capacity improvement.
- 5 We don't know what our target will be,
- 6 whether it's 10 percent improvement on exercise
- 7 capacity, 15 percent or 20 percent. And Dr. Brar
- 8 showed a table that you can read the various numbers.
- 9 We just assumed because the number 10 appears in our
- 10 discussions in multiple places, we construct the
- 11 relationship on a 10 percent improvement in exercise
- 12 capacity and calculate the corresponding PVR
- improvement of about 28 percent reduction. It would
- 14 take the intercept of the relation out of the
- 15 equation, then you would come up with the number of
- 16 23, as Dr. Brar mentioned earlier in his table.
- 17 The confidence, there's obviously an
- 18 uncertainty in this relationship, and you could,
- 19 therefore, constitute or construct a confidence
- 20 interval which would state that at an improvement of
- 21 about 20 to 40 percent, it is likely to achieve an
- 22 improvement of 10 percent on a maximum exercise

- 1 capacity scale.
- Now, how do we fit our adult data into this
- 3 relation? And for kind of statistical correctness, we
- 4 take out the confidence interval, because we know that
- 5 the FDA utilized our adult data in their analysis. So
- 6 what you see here only is the placebo-corrected
- 7 treatment responses from 1140 and 1141, 20, 40, 80
- 8 milligram, 1140, 80; and, 1141, the epoprostenol
- 9 background trial.
- 10 You, I think, get the impression that all of
- 11 those four dots follow quite nicely the relationship;
- 12 but furthermore, the majority of the dots achieve or
- 13 the majority of the improvements on PVRI actually
- 14 achieve the target which we would propose or could
- 15 propose here to discuss on both scales in PVRI, as
- 16 well as exercise capacity.
- 17 So if I would have made a decision on one of
- 18 the endpoints, it would have been likely that the
- 19 other endpoint decision would have been done on a very
- 20 similar base.
- Now, for the pediatric data, the picture
- 22 changes again a little bit because the pediatric data

- 1 is not available to the FDA, and so we could construct
- 2 a prediction interval again. And we do the same kind
- 3 of presentation here, subtracting the placebo response
- 4 as measured in 1131 from all the treatment arms and
- 5 plot the resulting improvement on exercise capacity,
- 6 as well as PVR improvement into the graph.
- 7 You see the majority of dots, or nearly all
- 8 dots, fall into the prediction interval. The low and
- 9 the medium dose follow quite nicely the relationship
- 10 under discussion. And most importantly, the
- 11 distinction between which dose to take forward if I
- 12 would make a dose recommendation distinction between
- 13 low and medium dose would come up as the same
- 14 conclusion, meaning that a medium dose would actually
- 15 be very well suited -- would fall very well into the
- 16 target of the PVR reduction, while the low dose
- 17 wouldn't. And the similar conclusion would be driven
- 18 using the exercise capacity endpoint, VO2 peak in this
- 19 trial.
- 20 Furthermore, if one would have not an
- 21 exercise capacity endpoint available in this trial,
- 22 then actually still, a very meaningful conclusion

- 1 would have been driven from just assessing the PVRI
- 2 scale on its own, because still I would probably go
- 3 for a minimum dose which would achieve a PVR target
- 4 response, and the decision would be very similar as to
- 5 go with a medium dose forward.
- Now, with that, I think I would like to
- 7 conclude and think I have shown you that the adult
- 8 sildenafil data follow the relationship the FDA has
- 9 proposed as being between PVRI and six-minute walking
- 10 distance, and it appears to be very consistent across
- 11 the adult data and the FDA model.
- 12 For the pediatric data, assuming, again,
- 13 exchangeability between the endpoints on exercise
- 14 capacity, a similar relationship could be shown.
- 15 Assuming an FDA proposed or promoted a
- 16 target in the future, then I would guess that the
- 17 adult sildenafil data follow very nicely into this
- 18 target. A 20 to 40 percent improvement we would think
- 19 would be reasonable to go forward with would have been
- 20 achieved in the trial and would correspond to a 10
- 21 percent six-minute walking distance improvement.
- 22 Finally, the target PVRI response which

- 1 might be promoted or you will deliberate in your
- 2 discussions later on during the day will hopefully
- 3 show you that we achieved in our sildenafil trial a
- 4 very corresponding, meaningful VO2 peak response.
- 5 Ultimately, I would guess one could conclude
- 6 here, coming back to kind of the last presented graph,
- 7 that the inferences or the decisions we would make or
- 8 would have made on either the adult or the pediatric
- 9 program taking either or the other endpoint forward
- 10 would be very similar and, therefore, we think that
- 11 the two endpoints perform very consistently.
- 12 With that, I would like to conclude and ask
- 13 Dr. Colin Ewen to come back.
- DR. KAUL: Dr. Ewen, why don't we just wrap
- it up and then we'll take a break?
- DR. EWEN: So, ladies and gentlemen, just a
- 17 few concluding remarks. I know that I'm now between
- 18 everybody and coffee, so I'll be quick.
- In terms of pulmonary arterial hypertension,
- 20 the disease, I think we've shown you today that it's a
- 21 rare, progressive and fatal disease and that the
- 22 diagnosis and its treatment rely, to a large extent,

- 1 on pulmonary hemodynamic measurements and assessment.
- I think we've shown that exercise capacity
- 3 supported by hemodynamics has been used in all adult
- 4 PAH development programs and hemodynamics have played
- 5 an important part in the assessment of the efficacy of
- 6 all the currently available drugs used in adults. And
- 7 I think the data presented today demonstrate and
- 8 describe the relationship between exercise capacity
- 9 and pulmonary vascular resistance index in adults with
- 10 pulmonary arterial hypertension.
- In terms of the conclusions I think we can
- 12 draw about the pediatric situation and the pediatric
- 13 data that we have in hand, I think we say that
- 14 pediatric PAH is certainly considered to be a similar
- 15 disease in adults and in children and that the
- 16 baseline hemodynamics are similar in adults and
- 17 children with PAH and that these hemodynamics show
- 18 similar response to treatment certainly in the
- 19 sildenafil program.
- 20 I think taken together, these findings
- 21 support the use of pulmonary vascular resistance index
- 22 as an endpoint in children with PAH to inform labeling

- 1 where a drug has been documented to improve exercise
- 2 capacity in adults. And with that, I would like to
- 3 conclude.
- DR. KAUL: Thank you. And thank you for
- 5 finishing ahead of time.
- 6 I'll take the chair's prerogative to take a
- 7 break for 20 minutes instead of 10. We'll reconvene
- 8 at 5 past 11:00, and then we'll have 55 minutes for
- 9 questions before we break for lunch. So, committee
- 10 members, please remember that there should be no
- 11 discussion of the meeting topic during the break
- 12 amongst yourselves or with any member of the audience.
- 13 We'll resume at 5 past 11:00. Thank you.
- 14 (Whereupon, a recess was taken.)
- DR. KAUL: Welcome back. I'm going to open
- 16 up the discussions for questions from the committee to
- 17 either the FDA or to the sponsor or to each other. So
- 18 feel free. The first one is Dr. Venitz.
- DR. VENITZ: Thank you. I have a question
- 20 for Pfizer first. In looking at your background
- 21 material, you differentiate among the different
- 22 subgroups in your pediatric study. And I'm looking

- 1 particularly at figure 12, where you break it down in
- 2 terms of their response over placebo and you conclude
- 3 that the patients that have Down syndrome don't show
- 4 any dose response at all relative to PVRI.
- 5 How would that affect your overall
- 6 conclusion of looking at the PVRI as a surrogate
- 7 marker of cardiovascular function, cardiopulmonary
- 8 function?
- 9 DR. EWEN: So that's an important question.
- 10 And I think before I answer you, I'd like to stress
- 11 that, as I said in the presentation, you have to look
- 12 at the totality of the data in terms of hemodynamics.
- 13 And that those data with regard to Down syndrome, I
- 14 would regard them, at this stage, exploratory and
- 15 maybe worthy of consideration for future trial
- 16 designs, but I don't think it's appropriate and
- 17 necessary to draw conclusions around those data at
- 18 this stage.
- DR. VENITZ: So you're arguing that there's
- 20 a good chance that they look like the overall
- 21 population. They're just, by chance, different in the
- 22 study that you conducted.

```
1 DR. EWEN: I think we'd have to look at
```

- 2 that. I mean, there are some data to suggest that
- 3 Down's children may behave differently from the
- 4 literature, but overall, I think we have a consistent
- 5 reduction in pulmonary vascular resistance index in
- 6 the population that we've studied in this study.
- 7 DR. VENITZ: With the exception of the Down
- 8 patients?
- 9 DR. EWEN: I'm not sure we can necessarily
- 10 draw that as it was a post hoc subgroup of a subgroup
- 11 analysis, but I think it's interesting data.
- DR. VENITZ: And how large was the sample
- 13 population, the sample size?
- DR. EWEN: We ended up, I think, with a
- 15 little over 50 patients with Down's syndrome.
- 16 DR. VENITZ: So 50 out of 260?
- DR. EWEN: Yes, but split by three treatment
- 18 groups.
- DR. VENITZ: So about 20 percent. Okay.
- 20 Thank you.
- DR. KAUL: Dr. D'Agostino?
- DR. D'AGOSTINO: I'd like to go to the last

- 1 presentation, slide 52.
- DR. EWEN: Slide 52, please.
- 3 DR. D'AGOSTINO: The comment I have is that
- 4 -- do we think or do you think that the FDA model is
- 5 ready for prime time, as they say? When you took the
- 6 FDA model and removed your data, the slope changed by
- 7 28 percent. And when you look at this graph here,
- 8 your prediction interval is about 50 percent of what
- 9 the scale. You go from 30 to minus 20 in terms of the
- 10 sort of area or range of interest, and the tolerance
- 11 or the prediction interval is about 50 percent of
- 12 that.
- So like anything that has a sort of downward
- 14 slope is going to basically fit into that. So the
- 15 question is, again, do you think you have enough
- 16 precision or, to not put it in a humorous vein, but do
- 17 you think you have enough precision in this model to
- 18 really use it for later predictions in effect size?
- 19 Because the confidence intervals around these things
- 20 are going to probably be extremely large.
- DR. EWEN: Could I ask, is that question
- 22 addressed to the sponsor or to the agency?

```
1 DR. D'AGOSTINO: Well, the sponsor used it.
```

- 2 Weren't they bothered by the fact that the tolerance,
- 3 the prediction intervals were so large and, also, to
- 4 the FDA in terms of the precision that their model
- 5 actually does carry?
- 6 DR. EWEN: Could I ask Dr. Harnisch to
- 7 comment, please?
- 8 DR. HARNISCH: I think we need to
- 9 differentiate on this graph the regression line
- 10 through the mean, which is the white line on the graph
- 11 and the prediction for an improvement in exercise
- 12 capacity based on a seen improvement on PVR. So that
- 13 graph, the grayish area depends on the sample size you
- 14 see. So if you run a new trial, your new trial would
- 15 have a spread of PVR changes that are positive or
- 16 negative. And in a group of subjects of 30, you're
- 17 very, very unlikely if you see a worsening in PVR of
- 18 about, let's say, 40 percent, that there will be
- 19 actually a corresponding large improvement on exercise
- 20 capacity.
- On the other side, if you see actually an
- 22 improvement in the sample size of treatment groups of

- 1 about 30 subjects of about 40 percent improvement, you
- 2 can read out from the graph that you basically have no
- 3 chance to see not an improvement on the exercise
- 4 capacity scale, so, yes.
- 5 DR. D'AGOSTINO: The question I'm raising is
- 6 that anything will fit into that prediction interval.
- 7 It's just a very large prediction interval. Are you
- 8 really somehow or other validating the model by this
- 9 or could you really say that we have enough precision
- 10 now with the model that the FDA produced to actually
- 11 use it for setting effect sizes and so forth?
- DR. HARNISCH: I think you would take -- and
- 13 I didn't stress it probably too far saying that this
- 14 is not a strong statistical comparison in a way
- 15 whether we are similar or different to the FDA model.
- 16 What I wanted to illustrate is that the data we have
- 17 at hand appears to be very similar in the changes of
- 18 the two or the changes of the two variables against
- 19 each other among our trials and the FDA or the overall
- 20 response.
- 21 I'm not saying that you can read out from
- 22 this graph directly whether 30 subjects per bin is the

- 1 right one to go forward, 30 subjects per treatment
- 2 group. You might need 50, but this is a different
- 3 assessment.
- 4 DR. KAUL: Can you, for some of us
- 5 innumerate on the committee, quantify the strength of
- 6 association? How much of the percent variation in one
- 7 variable predicts the percent variation in the other
- 8 variable? I mean, that's how we are used to
- 9 quantifying the strength of the association. The p-
- 10 values, to some of us, don't mean much.
- DR. HARNISCH: I think that's a question the
- 12 FDA would need to answer.
- 13 DR. A'GOSTINO: You'd need to sort of ask
- 14 where and then, also, the standard error estimate to
- 15 see just how tight you are here.
- DR. KAUL: Dr. Temple?
- DR. TEMPLE: Well, I'm certainly not capable
- 18 of answering that. I just want to make one
- 19 observation and make sure other people agree with me,
- 20 which is that what we're focusing on is the slope
- 21 here. It's perfectly possible that within that slope,
- 22 one drug could have a slightly bigger effect or more

- 1 effect on exercise for a given change in PVRI. That's
- 2 not ruled out, and I thought one of Dr. Brar's slides
- 3 sort of suggested that.
- 4 DR. D'AGOSTINO: You don't think the
- 5 relationship holds? I mean, I thought we were talking
- 6 about the relation, the delta versus delta, that we
- 7 thought somehow or other if you'd see a change of
- 8 delta in the PVRI, that that would correspond to a
- 9 change of delta in the log test. One drug may be
- 10 better than the other, but you're basically dealing
- 11 with basically the same slope.
- DR. TEMPLE: Well, that's the point. The
- 13 slope was the same for all of them. But in Dr. Brar's
- 14 thing with multiple colors for each drug type, you
- 15 could sort of read it as one of them being a little
- 16 higher, but there was always the same slope.
- DR. KAUL: Dr. Brar, would you like -- or
- 18 Dr. Gobburu, any one of you?
- DR. GOBBURU: My name is Joga Gobburu. I
- 20 work with the Division of Pharmacometrics at FDA. I
- 21 just wanted to respond to Dr. D'Agostino's point about
- 22 the gray. We're not clear why. We will have to look

- 1 at the graph that way.
- The key point is the mean line is the white
- 3 line that's shown there, and the dotted blue lines are
- 4 the 94 percent confidence intervals around that
- 5 regression line. The gray area is prediction
- 6 interval, which is the 95th percentile to the 5th
- 7 percentile.
- DR. D'AGOSTINO: I'm aware of all that.
- 9 DR. GOBBURU: So the question is about the
- 10 mean relationship of slope. There will be patients
- 11 who will have, for a given change of PVRI, different
- 12 response in terms of the six-minute walk distance. So
- 13 that's why we have been relying more on the double
- 14 delta plot.
- To respond to the chair's question, the
- 16 variability that is explained according to the double
- 17 delta plot is 70 percent by the PVRI.
- 18 DR. KAUL: I think, Dr. Neaton, were you
- 19 going to make that same point?
- DR. NEATON: I was going to make the same
- 21 point. I guess what I want to see is how it fits with
- 22 the double delta plot, not this one. The fact that

- 1 these two correlate is kind of one small factor, and
- 2 so that the important thing would be -- and this is
- 3 what I think Ralph and I were talking about earlier --
- 4 going back to your double delta plot, if you remove
- 5 one study at a time and kind of refit that line and
- 6 then ask the question what does the predicted six-
- 7 minute walk kind of look like relative to what was
- 8 actually observed, then that would add some insight to
- 9 the --
- 10 DR. D'AGOSTINO: That's basically the
- 11 motivation that my question -- how are we going to
- 12 quantify just how precise these analyses are? And I
- 13 think the delta delta versus delta delta is the right
- 14 plot to look at. And these things will tend to be
- jumping around maybe more than you'd like to see.
- 16 How tight is that relationship?
- DR. KAUL: Just to extend that question,
- 18 either the FDA or the sponsor can answer this
- 19 question.
- 20 Are the relationships between these
- 21 variables consistent across the range of age, lower
- 22 end and the higher end?

- DR. BRAR: Yes. I'd like to answer that
- 2 question. If we can go to my backup slide.
- 3 To answer your question, yes, it is. And if
- 4 we can go to my backup slide number 10, in essence
- 5 I'll just go over the analysis that we did.
- In essence, from the entire adult
- 7 population, I binned the age groups into guartiles to
- 8 essentially look at the relationship of the six-minute
- 9 walk distance and PVRI. And essentially, what the
- 10 plot will hopefully show, if it comes up soon, is the
- 11 forest plot shows that across age groups, we do see
- 12 that the relationship still holds, meaning
- 13 qualitatively. And in addition, the 95 percent
- 14 confidence bounds are essentially overlapping.
- I could almost say that the slope estimates
- 16 for all those are essentially the same across age
- 17 groups, and this is ranging from age 18 to 83. So I
- 18 binned into four groups. In addition, I binned into
- 19 half, where I looked at under 50 and over 50, and,
- 20 also, we see the same relation, as well.
- 21 DR. KAUL: Did the sponsor also do a similar
- 22 analysis in their two adult programs?

- 1 DR. EWEN: Dr. Harnisch?
- DR. HARNISCH: So this one does not have any
- 3 exercise capacity for the subjects below 7. So our
- 4 analysis would be limited to exercise capacity between
- 5 7 and 17.
- DR. KAUL: What about your adult program,
- 7 the two?
- B DR. HARNISCH: In the adult program, we have
- 9 a different exercise capacity endpoint, so you would
- 10 kind of split by age and by endpoint.
- DR. KAUL: That's okay. Whatever exercise
- 12 index you have, did you observe the same relationship?
- DR. EWEN: So have we seen an age effect, I
- 14 think, in the adult patient population?
- DR. HARNISCH: I mean, effectively, if you
- 16 overlay the pediatric population, then they are all
- 17 between 7 and 17, and the rest of the population is
- 18 from 18 to the maximum age in the sildenafil program.
- 19 So you cut by trial, you cut by endpoint and you cut
- 20 by age at the same time.
- DR. KAUL: Dr. Temple?
- DR. TEMPLE: I just want to point out, since

- 1 this slide is up --
- DR. BRAR: Maybe I can just give a better
- 3 explanation of this. Again, we're looking at the
- 4 forest plot, looking at the slope of the six-minute
- 5 walk distance PVRI relationship across age bins. At
- 6 the top, I have divided it essentially by median,
- 7 where we're looking at age group less than 50 or
- 8 greater than or equal to 50.
- 9 As you can see, if you bin by median,
- 10 greater than median or less than median, that the
- 11 slopes are the same. In addition, below shows if
- 12 they're binned by quartiles, where we have age 18 to
- 13 38 in different bins, and, in essence, the
- 14 relationship holds across those age groups.
- Just as a reference, and people can say I
- 16 consider this a young adult, less than 30, I've also
- 17 binned essentially just showing, again, the
- 18 relationship still holds. And the expected physiology
- 19 direction, in addition to the slope estimates, are the
- 20 same across age groups.
- 21 DR. KAUL: I assume the percent delta is
- 22 similar.

```
DR. BRAR: The percent delta is still
```

- 2 similar, correct.
- 3 DR. KAUL: Well, thank you. That's very
- 4 informative.
- 5 Dr. Newman?
- DR. NEWMAN: I have a question on slide 58.
- 7 DR. EWEN: Can we have slide 58, please?
- 8 DR. NEWMAN: It shows the delta delta for
- 9 the three doses. One way to interpret this -- and
- 10 it's a question about how do you go forward -- is that
- 11 the low dose had an insufficient PDE5 inhibition to
- 12 give a large effect, that the medium dose was
- 13 beneficial. And if the high dose may have resulted in
- 14 an increased cardiac output at rest, it didn't
- 15 increase reserve in exercise since there was a bigger
- 16 reduction in PVR than there was an improvement in six-
- 17 minute walk. That would be one way to interpret it.
- 18 You may interpret it differently.
- But my question is, if you do a study going
- 20 forward, would it be important to prospectively adjust
- 21 dose in order to achieve the PDE5 inhibition levels
- 22 that might be appropriate? So two things, would you

1 respond to my interpretation and then talk about what

- 2 you might do next?
- 3 DR. EWEN: So I think if I understand the
- 4 first part of your comment, are we seeing a sort of
- 5 flattening off of the exercise response, which isn't
- 6 being reflected in the changing pulmonary vascular
- 7 resistance index.
- 8 DR. NEWMAN: Well, the pulmonary vascular
- 9 resistance index and the blue dot is way down. So
- 10 it's a marked improvement, presumably more due to
- 11 cardiac output than reduction in PA pressure. But
- 12 that didn't translate into the improvement in exercise
- 13 capacity. So my question was, is that a resting
- 14 effect without an increase in cardiac reserve that
- 15 might occur?
- DR. EWEN: I'm not sure we necessarily
- 17 understand this, if you'd like the details of this.
- 18 But this is a similar effect we've seen in the adults,
- 19 as well.
- DR. NEWMAN: So how would you handle this
- 21 data going forward since the blue dot is slightly out
- 22 of proportion -- the PVRIs benefited, but the exercise

- 1 increase is not particularly --
- DR. EWEN: So I think if I understand your
- 3 question, if you take the adult data as your guide, if
- 4 you like, we would have assumed the target drop in
- 5 PVRI was associated with a 20 milligram TID dose
- 6 rather than the higher dose, and these data are
- 7 consistent with that dose prediction for pediatrics.
- 8 DR. KAUL: Dr. Coukell?
- 9 DR. COUKELL: Thank you. To understand the
- 10 role of PVRI, I'm still trying to understand the
- 11 alternatives. So could you help me to understand the
- 12 rationale for recruiting patients who are 1, 2, 3, 4,
- 13 whatever years old into a trial where the primary
- 14 outcome measure involved riding a bicycle, a
- 15 cyclometer? And then more importantly, as I
- 16 understand it, there are performance measures that
- 17 have been validated in much younger children. What
- 18 consideration did you give to developing some other
- 19 physical performance measure?
- 20 DR. EWEN: So to answer the first part of
- 21 your question, we anticipated at the outset of the
- 22 study that, obviously, there would be children who

- 1 would be too young to exercise, but we thought it was
- 2 important in discussions with the FDA to at least
- 3 obtain efficacy data in terms of hemodynamics on these
- 4 children, because there is no other alternative.
- 5 With regard to developing different
- 6 measures, at the moment, I'm not aware of anything we
- 7 could use at this point for contrast, and we certainly
- 8 didn't have anything in 2001.
- 9 DR. COUKELL: So nothing is out there, but
- 10 have you explored the possibility of developing and
- 11 validating one.
- DR. EWEN: We've given it some thought, but
- 13 it's nowhere near advanced far enough to be utilized
- 14 anytime soon.
- DR. KAUL: Dr. Rich?
- DR. RICH: Can we start with slide 53?
- DR. EWEN: Can we have slide 53, please?
- DR. RICH: So just to make sure that I
- 19 understand, what you've done here, you've just added
- 20 on in the blue line, blue dots, the pediatric data on
- 21 top of the adult data, correct?
- 22 DR. EWEN: I'll ask Dr. Harnisch to comment

- 1 on that.
- 2 DR. HARNISCH: Yes.
- 3 DR. RICH: Correct? Okay. And so what this
- 4 is showing is that in children, some of the children
- 5 had a dramatic worsening or increase in PVRI, which
- 6 was not reflected by any change in their exercise
- 7 capacity; is that correct?
- B DR. HARNISCH: You have definitely children
- 9 where the relationship is not based on the
- 10 presentation such as Dr. Brar gave earlier about the
- 11 four kind of panels you get into. You're not
- 12 achieving a perfect correlation and everybody is on
- 13 the right side.
- DR. RICH: I'm not asking you about perfect
- 15 correlation. I'm just asking if I'm understanding the
- 16 slide correctly. There were patients where the PVRI
- increased as much as 60 percent, and yet that was not
- 18 reflected by any meaningful change one way or the
- 19 other in their exercise capacity.
- DR. HARNISCH: That's true.
- DR. RICH: Okay. Could we go now to
- 22 slide 20?

```
DR. EWEN: Can we have slide 20, please?
```

- DR. RICH: So I find a little bit of a
- 3 dilemma here. This is the adult study, 1140, and I
- 4 think this is the pivotal trial by which sildenafil
- 5 got approved in pulmonary hypertension. And it shows
- 6 the difference in six-minute walk with the three
- 7 different doses, and because there was no meaningful
- 8 improvement in six-minute walk at the highest dose,
- 9 the agency gave approval at the lowest dose. Am I
- 10 correct?
- DR. EWEN: Yes.
- DR. RICH: Okay. So next slide.
- DR. EWEN: Slide 21, please.
- DR. RICH: So this is the hemodynamic data
- 15 from that study, and the hemodynamic data, if we just
- 16 focus on the left panel of PVRI, did show a dose
- 17 response effect at least with hemodynamics; that the
- 18 ones that got the highest dose, in blue, had a much
- 19 lower PVRI than the ones who got the lowest dose.
- 20 So then we have this dilemma. If you just
- 21 jump to slide 24 --
- DR. EWEN: Slide 24, please.

```
DR. RICH: -- considering, for children, to
```

- 2 give them the highest dose, which was the most
- 3 effective dose in your trials, and deny adults the
- 4 same benefit because the PVRI was ignored in the
- 5 adults, so the adults now are stuck with a low dose
- 6 which didn't change PVRI very much. The children get
- 7 the benefit of the high dose which changed PVRI a lot,
- 8 even though we can't show an exercise performance
- 9 difference.
- 10 I'm a little bit stuck in the middle here.
- 11 If we're going to be consistent, then shouldn't we
- 12 change the dosing for adults to also reflect the PVRI
- 13 if we truly believe that the PVRI, as a biomarker,
- 14 really does reflect long-term outcome? And that could
- 15 be answered, I guess, by you or by Bob or Norman.
- DR. TEMPLE: Well, I'm no maven on this, but
- 17 it wouldn't surprise me if six-minute walk is topped
- 18 out at some point by the fact that these people
- 19 haven't been exercising very much, they get tired and
- 20 other stuff that has nothing particular to do with
- 21 their pulmonary function. So that wouldn't surprise
- 22 me at all.

```
1 But you're asking a good question which is
```

- 2 maybe the increased difference in PVRI has something
- 3 to do with other outcomes that are, if anything, even
- 4 more relevant than how far you can walk, like whether
- 5 you live or die. I think that's a fair question. The
- 6 reason we would have done that -- and as Norm was
- 7 whispering, we asked them to study lower doses as
- 8 well -- was that we were relying on that as the
- 9 clinical benefit. That was the primary clinical
- 10 benefit. We would add other stuff if people would
- 11 show it, but they hadn't. But I think it's a good
- 12 question and needs some reflection.
- DR. RICH: And similarly, if we're being
- 14 asked to judge whether the disease is the same in
- 15 children as adults, then I'm bothered by the fact that
- 16 the PVRI got so much worse in some of the children and
- 17 you couldn't even see it in the six-minute walk,
- 18 whereas in the adults we would expect to see it. So
- 19 I'm just raising some things that are troubling.
- 20 DR. KAUL: I think the FDA would like to
- 21 respond.
- DR. JADHAV: My name is Pravin Jadhav. I'm

- 1 team leader in pharmacometrics at FDA. And we were
- 2 actually thinking of the same question, and we do have
- 3 some explanation. I'm not sure if this is a complete
- 4 explanation. I think where the difference is, is PVRI
- 5 being a very sensitive measure. In the overall
- 6 population, as you pointed out, there's a dose
- 7 response. A high dose shows a high effect on PVRI,
- 8 but that doesn't really translate into six-minute walk
- 9 distance. And you pointed out the disconnect that if
- 10 we show that the more change in PVRI should lead to
- 11 more change in six-minute walk distance.
- 12 The difference is, I think especially if you
- 13 look at the subset that Dr. Brar looked at it in terms
- 14 of the WHO Class 1, there is actually a hint of dose
- 15 response in six-minute walk distance, and it does then
- 16 open a little bit of a question, saying should we --
- 17 then there is more benefit in WHO Class 1 on six-
- 18 minute walk, also. Again, it's a group analysis
- 19 looking at data more.
- 20 But what explains the disconnect between the
- 21 PVRI six-minute walk relationship, where it says the
- 22 dose response is, I think PVRI being sensitive, it's

- 1 very easy to see dose response, whereas it's not so
- 2 easy to see dose response on six-minute walk distance.
- 3 DR. RICH: Okay. But when we're done with
- 4 all of this, what we need to do is translate all of
- 5 this language into clinically meaningful.
- DR. JADHAV: That's true.
- 7 DR. KAUL: Steve, before you get to ask your
- 8 question, I'm going to ask a question of you, and feel
- 9 free to answer it any which way you want to, with or
- 10 without regulatory implications in mind.
- 11 Are there any validated surrogate endpoints
- 12 for pulmonary arterial hypertension? If so, what are
- 13 they and do we have any idea about the relative
- 14 performance of these surrogate endpoints and are they
- 15 consistent across age groups?
- DR. KAWUT: So I think the answer to the
- 17 first question is, no, I don't think there are any
- 18 validated surrogate endpoints. And I guess it would
- 19 be helpful to kind of review what goes into making a
- 20 validated surrogate endpoint.
- It's got to be a reliable measure. It's got
- 22 to make sense. It would be great to be in the causal

- 1 pathway of the disease, but doesn't have to be. It
- 2 needs to consistently show relationships with
- 3 outcomes, clinically important outcomes, whether it be
- 4 exercise or survival. And last, it needs to be looked
- 5 at within the spectrum or within the context of
- 6 clinical trials, and it needs to be shown that the
- 7 effect of the treatment on the ultimate outcome is
- 8 almost fully or mostly explained by the effect of the
- 9 treatment on the surrogate.
- 10 When we go through the first two or three of
- 11 those criteria, we do have a decent number of markers
- 12 which meet those criteria. Certain blood biomarkers,
- 13 hemodynamics certainly meet the reliability, validity
- 14 causal pathway and epidemiologic association criteria.
- 15 It's this last criterion which has really been
- 16 difficult to get to.
- I think this is an opportunity both for the
- 18 sponsor and the FDA to get to that, which is do
- 19 hemodynamics, do PVRI explain the impact of the drug
- 20 under study on the ultimate outcome. And today it
- 21 sounds like that six-minute walk distance, but to me,
- 22 it's probably more time to hospitalization or death.

1 DR. KAUL: Does the six-minute walk test lie

- 2 in the causal pathway?
- 3 DR. KAWUT: That's a great question. It
- 4 doesn't and might be a biomarker, but analyses have
- 5 been shown -- actually, at the FDA meeting we had a
- 6 few months ago, one of the industry groups actually
- 7 looked and did this kind of proportional effects
- 8 analysis and showed that the impact of the drug on the
- 9 six-minute walk did not at all explain the impact of
- 10 the drug on long-term outcomes. So I can, I think,
- 11 safely say that six-minute walk is not a surrogate
- 12 endpoint. It might be an intermediate endpoint and
- 13 may be clinically important, but it is not a surrogate
- 14 in this disease.
- DR. KAUL: Dr. Temple?
- DR. TEMPLE: But we haven't considered it a
- 17 surrogate for the disease. We considered it a measure
- 18 of clinical benefit in much the same way exercise
- 19 ability and heart failure can be, although you want to
- 20 know the outcome.
- 21 It's a perfectly fair question of how an
- 22 improvement in that corresponds to the ultimate

- 1 outcome. That's a very good question. We're always
- 2 interested in that. But the question being raised
- 3 here is whether the change in PVRI is a surrogate that
- 4 predicts the walking benefit. Whether you could go
- 5 further, we don't know. And it is getting, as
- 6 somebody pointed out, much, much, much harder to do
- 7 outcome studies here and leave people untreated.
- 8 Nobody wants to do that.
- 9 But one of the questions raised by some of
- 10 the previous conversation is suppose you go past the
- 11 dose -- suppose you go past the dose that gives you
- 12 your best effect on walking distance, but does improve
- 13 PVRI? Would that have an outcome effect? Now, that
- 14 is presumably studyable, and that's an interesting
- 15 question.
- DR. KAUL: I think both of you echo the
- 17 conundrum that we are faced with, trying to figure out
- 18 whether this is a surrogate which we don't know is
- 19 really a surrogate.
- 20 DR. TEMPLE: But the ability to exercise
- 21 more, whether measured in a treadmill test or in a
- 22 quality of life assessment or a patient-reported

- 1 outcome, I don't think anybody doubts that that isn't
- 2 a real benefit. Whether it corresponds to improved
- 3 survival is an interesting and very important
- 4 question. But we had felt it was of benefit by itself.
- 5 DR. KAWUT: And I would respectfully
- 6 disagree. I don't at all think -- and I know of no
- 7 data that correlates changes in VO2 max with how a
- 8 patient feels, functions or survives. And so that's
- 9 where the issue -- and six-minute walk, maybe we can
- 10 sell that walking farther is better, and that would
- 11 make sense to a patient.
- DR. TEMPLE: Actually, in conventional heart
- 13 failure, not this kind, there is data to that effect,
- 14 because somebody went to the trouble to develop a
- 15 very, very, very good heart failure scale. So I'm
- 16 sure there aren't those data here, but that doesn't
- 17 mean there couldn't be.
- 18 DR. KAUL: And there is an example of a
- 19 trial called STRIDE-1 where there was a disconnect,
- 20 where the peak VO2 did not track with the six-minute
- 21 walk test and I've heard explanations that there were
- 22 technical issues with how they measured the VO2 peak,

- 1 but there's an example of a disconnect. Are there any
- 2 other such examples of disconnect that any one of you
- 3 are aware of?
- DR. KAWUT: Well, in data from Columbia, we
- 5 looked at our cohort of adult patients looking at VO2
- 6 max, it actually did not correlate with survival. And
- 7 there's only one or two studies in pulmonary
- 8 hypertension where it does. And that was actually
- 9 going to be my question, which is when we designed
- 10 this study, was this considered a surrogate or an
- 11 intermediate endpoint, because, in my mind, there's
- 12 some data connecting VO2 max to survival. So I would
- 13 think this is a surrogate endpoint in this study. But
- 14 it sounds like that wasn't the intent.
- DR. TEMPLE: I think VO2 max has more
- 16 properties of a surrogate because you're not actually
- 17 necessarily walking faster. But we have not --
- 18 there's debate about definitions, but the view has
- 19 been generally that the ability to walk longer is not
- 20 really different from a very good patient-reported
- 21 outcome that showed you could do more things. But
- 22 it's easier to quantify, easier to set the conditions

- 1 of the test and, therefore, more sensitive.
- 2 I'm sure all of those things could be
- 3 debated, and there's much more interest now in the
- 4 living with heart failure scale which everybody thinks
- 5 is a great advance in heart failure. And they do
- 6 track pretty well. They even track with New York
- 7 Heart Association classification.
- B DR. KAUL: Steve, you get to ask a question
- 9 now.
- 10 DR. KAWUT: I quess we've seen a lot of
- 11 analyses, and they're well calibrated. I think
- 12 someone used that term. And the question is, is that
- 13 how we want to look at the data, and did you do
- 14 analyses looking at discrimination.
- So if you take some increment of change of
- 16 PVRI, what's the positive and negative pick to value
- 17 that you'll see some increment of change of six-minute
- 18 walk, which, if it's calibrated, it should be
- 19 discriminating? But I wondered if either the sponsor
- 20 or the FDA had done those analyses.
- DR. EWEN: So we haven't done those
- 22 analyses. Perhaps the agency has.

```
1 DR. BRAR: Is this analysis, the double
```

- 2 delta scale, you're saying removal of trials to see if
- 3 the relationship still holds or are you asking for
- 4 like a single delta looking at if you take data off,
- 5 like, say, the ends, for instance, and looking to see
- 6 if the relationship still holds? We have run that
- 7 analysis, and this is in the backgrounder, as well.
- B DR. KAUL: If I can extend that, I think
- 9 what is being asked here is that will a change in your
- 10 hemodynamic variable predict a clinically meaningful
- 11 change. So it's a binary decision, and so can it help
- 12 discriminate those with the outcome of interest from
- 13 those without the outcome of interest, not a
- 14 continuous relationship question.
- DR. BRAR: That's a very good question. And
- 16 I think, first and foremost, before we could answer
- 17 that question, is to determine what is the clinically
- 18 relevant change. And we don't know this is the reason
- 19 why this analysis has not been done, so I right now
- 20 would not be able to answer that question.
- DR. KAUL: Dr. Rich?
- DR. RICH: So to address this, in a way,

- 1 when we chose six-minute walk as the primary endpoint
- 2 in the epoprostenol trial, there was no knowledge of
- 3 what a clinically meaningful delta would be, and the
- 4 trial was designed just to show the statistically
- 5 significant difference between the treatment versus
- 6 control groups, even if it was 1 meter, as long as it
- 7 met that test.
- 8 Since then there's been a lot of reports
- 9 about what a clinically meaningful change in six-
- 10 minute walk is. The typical six-minute walk baseline
- in these trials is about 325 meters. It's remarkably
- 12 consistent from trial to trial. And a normal,
- 13 although no one really knows what a normal is, is
- 14 about 550 to 600. And the typical change -- and what's
- 15 very interesting is regardless of the trial, the drug,
- 16 the patients, the dose or the duration, it's always
- 17 about 40 meters.
- 18 There is a paper that addressed clinically
- 19 meaningful in people with lung disease, and they said
- 20 they needed at least a 55-meter change before the
- 21 patient could even detect whether they felt better or
- 22 worse. And another paper came out and said it was in

- 1 the 70-meter range.
- 2 So one of the problems we might be facing is
- 3 that we're looking at a delta in six-minute walk in
- 4 these trials that while statistically significant,
- 5 have such little impact on the wellness of the
- 6 patient, that it's very hard to ascertain whether or
- 7 not it's truly reflecting the disease process and a
- 8 beneficial effect.
- 9 I can say that most of us would agree that
- 10 walking farther is a good thing in these people,
- 11 because they can't walk far. And when someone walks
- 12 150 meters, it's very easy to ascertain, because
- 13 they're so much better. But I have a lot of patients
- 14 who walk 30, 40 meters better and they look at me and
- 15 they're wondering when they are going to get their
- 16 treatment. So I think it's a relevant issue.
- DR. KAUL: So you're saying that they cannot
- 18 -- the change that you see, on average, cannot
- 19 distinguish a clinically meaningful impact from a
- 20 learning effect if you were to repeat that test.
- 21 DR. RICH: There is a training effect --
- DR. TEMPLE: No, that's not --

```
1 DR. RICH: -- but I'm not going to
```

- 2 discount --
- 3 DR. TEMPLE: This is corrected for that.
- 4 This is the double delta.
- 5 DR. RICH: I think there is a drug effect.
- 6 The bigger issue is whether the drug is working, and,
- 7 personally, I don't think it's working on the
- 8 pulmonary circulation. It could be working on the
- 9 skeletal muscle. All you need is to improve skeletal
- 10 muscle blood flow and you can walk 30 meters farther.
- 11 Then there was another study that's never
- 12 been mentioned here that was published in Circulation
- 13 a few years which looked at the effect of an exercise
- 14 rehab program in patients with pulmonary arterial
- 15 hypertension, on what's considered maximal medical
- 16 therapy. And the improvement in six-minute walk was
- 17 96 meters, which is almost three times what you get
- 18 with a drug trial, and no one makes the claim that the
- 19 PVRI was affected at all by being enrolled in a rehab
- 20 program.
- 21 So there are really serious issues about the
- 22 interpretation of the six-minute walk with respect to

- 1 the underlying disease, pulmonary hypertension.
- 2 DR. KAUL: Dr. Barst?
- 3 DR. BARST: In the studies in which we
- 4 demonstrated the six-minute walk treatment effects of
- 5 approximately 40 meters in the various trials, we also
- 6 saw that there was a correlation with the improvement
- 7 in functional class across the board. It's my belief
- 8 that an improvement in functional class is feel
- 9 better, number one.
- Number two, with regard to the rehab
- 11 program, which those data came out several years ago
- 12 from the Giesen group, that, in fact, has been shown
- 13 that that improves exercise capacity. However,
- 14 knowing that, our studies have been designed and
- 15 continue to be designed that a patient who is going to
- 16 enroll in a study could not have started a rehab
- 17 program within 12 weeks of enrollment and is precluded
- 18 from starting a rehab program during the course of the
- 19 trial.
- 20 We saw the functional improvement consistent
- 21 in the pediatric trial, as well, that there was a
- 22 significant functional class improvement in these

- 1 children.
- DR. RICH: To be clear, I didn't want to
- 3 imply that the change in six-minute walk was not a
- 4 drug effect. I truly do believe it's a drug effect.
- 5 The question really is how the drug is working.
- The issue with functional class, and that's
- 7 also real, is that there will be people who will
- 8 perceive whatever the delta is in six-minute walk as
- 9 feeling better, report a better functional class. But
- 10 what we don't have is a histogram of the whole spread
- 11 of change in six-minute walk and then how that
- 12 correlates, because functional class is, in a sense,
- 13 binary. They're three and they go to two, for the
- 14 most part. And so that may be some of the reason for
- 15 that problem.
- DR. KAUL: Dr. Temple?
- DR. TEMPLE: One of the things we've become
- 18 more interested in recently -- and it's probably not
- 19 reflected in these analyses -- is not just the mean
- 20 effect, which is not what really happens to anybody in
- 21 particular, but what the distribution effect is. So
- 22 if the mean effect is 40, there's obviously a range.

1 Some people get 20, some people do get something that

- 2 might be considered important.
- 3 It's probably more important than we've
- 4 insisted on to look at the distribution, because you
- 5 invariably see that there's a difference in the number
- of people on placebo and drug who have an 80-meter
- 7 difference, as well as the difference in the mean. So
- 8 that's probably worth thinking about, too.
- 9 DR. KAUL: Dr. Neaton?
- DR. NEATON: Can I just go back to Dr.
- 11 Brar's presentation, the delta delta graph, slide 9,
- 12 and just ask the question I asked earlier again?
- 13 Because I'm not really sure I understand your answer
- in response to the circles on this slide.
- My look at this slide is there are a fair
- 16 number of studies that had fairly large decreases in
- 17 delta delta PVRI, but minimal changes in six-minute
- 18 walk. So if I was to do a two-by-two table and
- 19 basically ask the question, did the pivotal study
- 20 reach its endpoint based on six-minute walk versus did
- 21 it reach it on PVRI, I think there's a fair amount of
- 22 discordance.

- I say that and also because when I look at
- 2 the children's study that was presented earlier, you
- 3 get a different answer with regard to whether the
- 4 treatment works. If you look at medium dose, there's
- 5 a disconnect there, because it won on VO2 and lost at
- 6 the PVRI. And the high dose kind of lost on VO2, but
- 7 won on PVRI.
- 8 So that's just a very simplistic but
- 9 somewhat intuitive kind of approach to this. When I
- 10 look at it, there's not a lot of concordance.
- DR. BRAR: I see. First and foremost then,
- 12 I don't know if this may explain some of this
- 13 discordance. This is a subset population of the WHO
- 14 Group 1 idiopathic familial pulmonary hypertension
- 15 patients. When I look at the actual label where we're
- 16 looking at a change in six-minute walk distance or the
- 17 change in PVRI over placebo, we could see that they're
- 18 all in actually accordance, where they won on six-
- 19 minute walk distance, they also would win on PVRI. So
- 20 for this, this is a subset analysis.
- 21 In addition, I have also made the circles
- 22 into different dose groups. And I did not stipulate

- 1 which ones of those dose groups are actually approved.
- 2 But this can show you, one, that there is some sort of
- 3 dose response; two, that we do see, on average -- and
- 4 this is what I can gather from this -- that we see
- 5 improvement in PVRI, we see improvement in six-minute
- 6 walk distance over placebo. But the actual decision-
- 7 making for approvability based on this information --
- 8 and it may be confounded, because we looked at a very
- 9 --
- 10 DR. NEATON: That's a fair comment. So kind
- of my approach, simplistic, it has some problems with
- 12 it, and one of them is potentially power, and that's
- 13 kind of what you're reaching to. It seems like that
- 14 needs to be very carefully considered along with the
- 15 type of validation that we looked at before, before
- 16 you can make any kind of meaningful statement about
- 17 substituting this endpoint. And so that's my main
- 18 point.
- But the other is I guess I'm not getting one
- 20 point. And that is, we're being asked to consider
- 21 kind of whether or not the changes in PVRI are
- 22 reasonable substitutes for six-minute walk. And I can

- 1 think about that within adults, and there's ways of
- 2 approaching it. But I heard this morning that the six-
- 3 minute walk in kids is not really interpretable, and
- 4 it's not only because you can't do it, it's because
- 5 some kids walk a long distance even though their PVRIs
- 6 are bad.
- 7 So help me with that logic. Why am I trying
- 8 to consider this endpoint related to six-minute walk
- 9 when it can't be measured reliably in kids?
- 10 DR. BRAR: Because I think there is also
- 11 supporting evidence besides doing this relationship
- 12 between PVRI and six-minute walk distance. One, it's
- 13 diagnostic of the disease. And first and foremost,
- 14 this diagnostic that you have, PAH, is the evaluation
- of pulmonary hemodynamics, and it's the same
- 16 diagnostic criteria that's used between pediatrics and
- 17 adults. That's one.
- DR. NEATON: I accept all that. But you
- 19 heard earlier, I thought very well presented by a
- 20 member of the panel here, there were criteria for
- 21 surrogacy and you need a lot more than that. And
- 22 you're kind of beginning to get there, but it just

- 1 seems like, from looking at this graph, unless there's
- 2 more behind it, you're a long ways from it.
- 3 DR. BRAR: And what would you suggest, if
- 4 you don't mind me asking what the next procedure would
- 5 be then? And I think that's one of the AC questions,
- 6 actually, that could be hopefully addressed.
- 7 DR. KAUL: Why don't we get to that in the
- 8 afternoon?
- 9 Dr. D'Agostino?
- DR. D'AGOSTINO: Just a comment here.
- 11 When the FDA presentation was being made, I
- 12 was taking it that part of their development was that
- 13 they were going to look at what happens with adults
- 14 and somehow or other infer that to children. And
- 15 you're saying what if you just looked at children, it
- 16 wouldn't work. But there is a big jump that I think
- 17 that underlies a lot of this that somehow or other, if
- 18 you find your relationship in adults, that it should
- 19 hold for children. Did I read that correctly or did I
- 20 hear that correctly from the FDA?
- 21 DR. TEMPLE: Yes. That's sort of the
- 22 fundamental question. We're reasonably persuaded

```
1 that -- correct me if this is wrong -- but we're
```

- 2 reasonably persuaded that the relationship exists for
- 3 adults. The little kids can't exercise. Do we know
- 4 enough to say this is a reasonable substitute for the
- 5 test you can't do?
- 6 DR. KAUL: The problem here is that you're
- 7 using two different indices of exercise capacity in
- 8 adults versus children.
- 9 DR. TEMPLE: Mostly six-minute walk.
- DR. KAUL: But not in children.
- DR. TEMPLE: Well, that's true.
- DR. KAUL: So in adults, we're using
- 13 six-minute walk and we are using VO2 peak in children.
- 14 And so there is a missing link. Is there any
- 15 relationship between six-minute walk test and VO2 in
- 16 the adult population? Because that's the only
- 17 population where you can do the six-minute walk test.
- 18 If there was reasonable evidence of a
- 19 coherent relationship in the adults between these two
- 20 indices, then I would feel a little bit more
- 21 comfortable extrapolating it to the pediatric
- 22 population, because I'm somewhat reassured by the

- 1 consistency of the relationship across the age group,
- 2 including the lower end of the age group.
- 3 DR. TEMPLE: So you're saying in addition to
- 4 the six-minute walk in adults, you'd have VO2 in older
- 5 kids and that would show it, and then you'd feel
- 6 comfortable, more comfortable maybe.
- 7 DR. KAUL: Exactly, because this is the
- 8 missing link. This is a leap of faith that we are
- 9 asked to make.
- 10 Dr. Rich?
- DR. RICH: So one of the fundamental
- 12 questions I guess we'll talk about this afternoon is
- 13 whether it's the same disease in children as adults,
- 14 because isn't that one of the bases for being able to
- 15 extrapolate and consider this? And my answer is it's
- 16 not, and let me point out why.
- 17 Histologically, under a microscope, the
- 18 pulmonary vessels look the same. But the disease as a
- 19 syndrome, if you will, is dictated by the right
- 20 ventricle. And all of the studies have shown that all
- 21 of the outcome measures and survival relate to RV
- 22 function, not to PA pressure. If you look at the PVRI

- 1 equation, it's all driven by the changing cardiac
- 2 output and not by really the change in PA pressure.
- In the adult trials, about 40, 50 percent of
- 4 the patients were idiopathic, another 40 percent were
- 5 connective tissue disease, and very few, less than
- 6 10 percent, are congenital heart disease. And the
- 7 kids typically are born with more muscular right
- 8 ventricles and do much better with pressure low like
- 9 with pulmonic stenosis than the adults do.
- 10 If you look at the pediatric trial as
- 11 described in the booklet I got from the sponsor, there
- 12 was about a third -- a third, a third. A third were
- 13 idiopathic. Two-thirds were congenital, of which half
- 14 of those were uncorrected congenitals. We excluded
- 15 uncorrected congenitals from all of the adult trials
- 16 because of the concern that their exercise physiology
- 17 is so different. They shunt right to left.
- 18 So in addition to their pulmonary
- 19 resistance, the amount of shunting, which very much
- 20 dictates how far they can walk, is related to their
- 21 blood pressure. Kids with higher blood pressure will
- 22 shunt less than kids with lower blood pressure. Their

- 1 hemoglobin, which is their compensatory response to
- 2 the hypoxemia -- and it was such a confounder that we
- 3 all agreed, for adult trials, we would take people
- 4 with repaired congenital heart disease, but never with
- 5 unoperated congenital heart disease.
- 6 Yet a third of the patients, I believe --
- 7 correct me if I'm wrong -- in the pediatric trial here
- 8 had uncorrected congenital heart disease. I haven't
- 9 seen any subset data. Maybe that explains some of the
- 10 ambiguity from the response here, but again, I need to
- 11 remind everybody that there are important differences
- 12 between children with pulmonary hypertension and
- 13 congenital heart disease versus adults.
- DR. KAUL: Let me see if I can extend your
- 15 logic further. You're saying that RV function is not
- 16 only a modifier of survival but also of exercise
- 17 capacity. And if you use six-minute walk distance as
- 18 your index of exercise capacity, because RV function
- 19 is relatively better maintained in children than in
- 20 adults, that's why six-minute walk test is not as
- 21 reliable as an indicator of exercise capacity.
- DR. RICH: Perhaps it may be too insensitive

- 1 to detect the changes where you see it in the
- 2 hemodynamics.
- 3 DR. KAUL: So are there any data where you
- 4 adjust for the RV systolic function in children and
- 5 demonstrate that this exercise capacity index becomes
- 6 a stronger predictor?
- 7 DR. RICH: The only thing I can say is that
- 8 the document that we got from the agency analysis
- 9 showed an equation that incorporated right atrial
- 10 pressure, and that was wonderful, because of all of
- 11 the hemodynamics that predict outcome, right atrial
- 12 pressure is the singly most powerful one.
- In the NIH registry, before there are drugs
- 14 in every drug treatment trial, in every outcome, in
- 15 very survival analysis, single center, multi-center,
- 16 right atrial pressure stands out as the single most
- important hemodynamic variable, because it's the one
- 18 that best represents the right ventricular function.
- 19 Since your equation that incorporated right
- 20 atrial pressure seemed to be appropriate, my request
- 21 is, please, if we adopt a hemodynamic biomarker --
- 22 and I'm not saying I'm against it -- in pulmonary

- 1 hypertension trials, please take the best hemodynamic
- 2 biomarkers we have and please include the right atrial
- 3 pressure.
- An argument was made that in children, the
- 5 right atrial pressure is often not elevated, but that
- 6 was a single center study and that may be a stage
- 7 issue, because in the baseline data from Pfizer, the
- 8 right atrial pressure in the adults and children were
- 9 identical at the time of enrollment.
- 10 As Robyn showed in her graph, when the
- 11 patients were dying, the right atrial pressure was
- 12 going up and up and up as well.
- DR. KAUL: So, Dr. Brar, you sort of
- 14 sacrificed your best model for pragmatic reasons.
- DR. BRAR: Correct.
- DR. KAUL: And that's understandable, but I
- 17 think we ought to at least see some data. I'm not an
- 18 expert in pulmonary hypertension. My guess is that
- 19 there are individuals in the pediatric age where the
- 20 RA pressures are elevated.
- DR. BRAR: It was my understanding -- and to
- 22 clarify for everyone -- that our final model included

- 1 right atrial pressure and pulmonary vascular
- 2 resistance index in the adult population. It was my
- 3 understanding, as Dr. Rich eloquently stated, that
- 4 right atrial pressure -- and, also, Dr. Barst stated -
- 5 that right atrial pressure isn't affected as much in
- 6 the pediatrics as it is in the adults. And that's the
- 7 primary reason why we took that out of the equation.
- 8 That is correct.
- 9 DR. KAUL: What happens if you compare data
- 10 from the two models?
- DR. BRAR: What happens? First and
- 12 foremost, I did also a univariate measure looking at
- 13 PVRI and six-minute walk distance, also looking at RAP
- 14 as a function of six-minute walk distance. We also
- 15 see the same consistency.
- 16 As far as the comparison of the models
- 17 between PVRI versus PVRI plus RAP, both PVRI plus RAP
- 18 was able to explain the double delta a little bit
- 19 better than it does for the delta PVRI alone. That is
- 20 correct. But the main reason why we took it out was
- 21 because we thought, from the opinions that I've
- 22 received, that the right atrial pressure was not

- 1 affected much in the pediatric. And I may be
- 2 incorrect in doing so.
- 3 DR. KAUL: Dr. Black, you get the last
- 4 question before lunch break.
- 5 DR. BLACK: This may be a hard question. I
- 6 want to follow-up what Stu said. He said that he
- 7 wanted a clinically meaningful finding. Do you have
- 8 any to suggest or does anyone? I don't see patients
- 9 like this, and I wonder what you would use.
- DR. KAUL: We will address that in the
- 11 afternoon, if you don't mind.
- 12 So at this point, we will break for lunch.
- 13 We will reconvene again in this room in one hour from
- 14 now at about 1:00 p.m. Please take any personal
- 15 belongings you may want with you at this time. And
- 16 for committee members, please remember that there
- should be no discussion of the meeting during lunch
- 18 amongst yourselves, with the press or with any member
- 19 of the audience. Thank you.
- 20 (Whereupon, at 12:01 p.m., a lunch recess
- 21 was taken.)

Τ	A F T E R N O O N S E S S I O N
2	(1:17 p.m.)
3	DR. KAUL: Welcome back. We will begin with
4	the open public hearing session. Both the Food and
5	Drug Administration and the public believe in a
6	transparent process for information gathering and
7	decision-making. To ensure such transparency at the
8	open public hearing session of the advisory committee
9	meeting, the FDA believes that it is important to
10	understand the context of an individual's
11	presentation.
12	For this reason, the FDA encourages you, the
13	open public hearing speaker, at the beginning of your
14	written or oral statement, to advise the committee of
15	any financial relationship that you may have with the
16	sponsor or its product and, if known, its direct
17	competitors. For example, this financial information
18	may include the sponsor's payment of your travel,
19	lodging or other expenses in connection with your
20	attendance at the meeting.
21	Likewise, the FDA encourages you at the
22	beginning of your statement to advise the committee if

- 1 you do not have any such financial relationships. If
- 2 you choose not to address this issue of financial
- 3 relationships at the beginning of your statement, it
- 4 will not preclude you from speaking.
- 5 The FDA and this committee place great
- 6 importance on the open public hearing process. The
- 7 insights and comments provided can help the agency and
- 8 this committee in their consideration of the issues
- 9 before them. That said, in many instances and for
- 10 many topics, there will be a variety of opinions. One
- of our goals today is for this open public hearing to
- 12 be conducted in a fair and open way, where every
- 13 participant is listened to carefully and treated with
- 14 dignity, courtesy and respect. Therefore, please
- 15 speak only when recognized by the Chair. Thank you
- 16 for your cooperation.
- We have two speakers. Speaker number 1,
- 18 Dr. Beardsworth.
- DR. BEARDSWORTH: Good afternoon,
- 20 Mr. Chairman and advisory committee. As you just
- 21 said, my name is Dr. Anthony Beardsworth. I'm here
- 22 representing Eli Lilly and company and, as such, could

- 1 be seen as a competitor to the sponsor. I have no
- 2 financial interactions with the sponsor.
- What I'd like to do is perhaps start off by
- 4 thanking the FDA for convening this advisory committee
- 5 in open forum. This is a very interesting and complex
- 6 scientific issue that has significant clinical impact
- 7 even today. So I thank the FDA for convening this
- 8 meeting.
- 9 I would also like to commend the sponsor and
- 10 the FDA and the advisory committee on the level of the
- 11 debate that has occurred already, and I look forward
- 12 to the rest of it this afternoon.
- I don't envy the advisory committee, the
- 14 challenge that has been set them by the FDA. And as
- 15 they deliberate on those questions through this
- 16 afternoon, what I would ask is that when the
- 17 scientific complexity of the challenge that they've
- 18 been given seems overwhelming, that they grasp their
- 19 left thumb in their right hand, they take a few deep
- 20 breaths and they try and remember the three things
- 21 that I'm going to tell you in the next eight minutes.
- 22 Those three things, I think, are key aspects

- 1 that will impact your deliberations. The first --
- 2 and I don't think there's going to be anyone who
- 3 disagrees with this -- is keep in mind the patient.
- 4 The second thing that I'd like you to keep in mind is
- 5 the clinical reality of trying to conduct studies in
- 6 this patient population. And the last thing that I
- 7 would like you to keep in mind, and I think it will
- 8 become evident in your discussions, is the critical
- 9 need that we have, or need, for a single primary
- 10 efficacy endpoint that spans the entire age range of
- 11 this pediatric patient population.
- So those are the three things that you're
- 13 going to need to think about when it's all getting too
- 14 much for you: the patient, the clinical reality of
- 15 conducting these studies, and the need for a single
- 16 efficacy endpoint to span the entire age range.
- So let's talk about a little bit about the
- 18 patient. And as I said, I think we are all here to
- 19 try and improve the outcome, the care and the
- 20 management of the patient. No one will disagree with
- 21 that. And I'm not qualified to represent the
- 22 patients' views, but what I do know is that the

- 1 current situation of products that are licensed for
- 2 adults with PAH being used in children in the absence
- 3 of data is a situation that we must improve on. We
- 4 are crying out for robust, scientifically valid and
- 5 clinically relevant data that can guide the safe and
- 6 effective prescribing in this very vulnerable patient
- 7 population.
- Now, Dr. Barst alluded to the fact of how
- 9 devastating, life-changing and ultimately life-
- 10 threatening this diagnosis is. And we've also heard
- 11 that, in fact, this condition is very rare. And it's
- 12 that rarity that moves me to my second point, which is
- 13 the issue around the clinical reality of trying to
- 14 conduct studies in this patient population.
- The sponsor commented and alluded to the
- 16 difficulties and challenges that they have faced in
- 17 conducting this very impressive clinical trial. Five
- 18 or six years to recruit 250 patients, and I think I
- 19 heard -- and I may have got the number wrong -- only
- 20 25 patients in the North Americas over five years.
- The challenges that the sponsor faced then
- 22 have escalated and have increased. I think what lies

```
1 behind that is obvious, but I'm going to comment on
```

- 2 them a little bit anyway. Clearly, the patient
- 3 population is rare. There are considerable concerns
- 4 raised by the patients, their parents, their carers,
- 5 their investigators, and ethical boards around the
- 6 conduct of these trials in this patient population.
- 7 That is made worse by the fact that there is
- 8 a belief that there are treatments out there already
- 9 that have significant efficacy for this patient
- 10 population. And so we're in a spiral of having an
- 11 inability to recruit for these studies, because
- 12 increasingly, drugs are being used in the absence of
- 13 data, a spiral we must break.
- 14 The problems that the sponsor faced were
- 15 made even more difficult by the fact that they didn't
- 16 have a single unifying endpoint that crossed the
- 17 entire age range. This resulted in only 50 percent of
- 18 the patients that they recruited into this study being
- 19 eligible for the primary efficacy endpoint. That is a
- 20 terribly inefficient use of these patients who have
- 21 volunteered their services for this clinical trial.
- We must have a single unified efficacy

- 1 endpoint that spans this patient population. And, in
- 2 fact, we've had some debate about it already, and
- 3 there is already agreement that there are some
- 4 endpoints that do span the entire age range. And
- 5 those are the functional endpoints, obviously, of
- 6 mortality but also of clinical worsening.
- 7 The problem we have is returning to the
- 8 clinical reality of trying to conduct these studies.
- 9 I have no doubt that we could perform a clinical
- 10 worsening study if we were able to enrich the patient
- 11 population with a group of patients who are
- 12 sufficiently sick for us to have those events. The
- 13 problem we have is actually recruiting those patients
- 14 is very difficult because of the belief that there are
- 15 already existing therapies that will provide benefit
- 16 for them.
- 17 That's why I'm so excited about this
- 18 meeting, because I think the revelation of the data
- 19 that the FDA has put together, which I'm very excited
- 20 about, gives us a unique opportunity to gather you
- 21 people in this room to really look at these data and
- 22 try and understand whether we really believe that we

- 1 can move from the scientific ideal to the clinical
- 2 reality and allowing in drugs that have already proven
- 3 efficacy in adults and safety in adults, that we can
- 4 make that leap and use hemodynamics or PVRI, in
- 5 particular, as that unifying endpoint that spans the
- 6 entire age range.
- 7 I think this is a unique chance, and if we
- 8 don't take it now, we really need to understand what
- 9 we need to do to get to the point where we can have a
- 10 single unifying endpoint. Otherwise, we're going to
- 11 be having the same discussion in 20 years' time, and
- 12 we will not truly have served the patient.
- 13 So when it all gets too much, hold your
- 14 thumb, deep breaths and remember the three things.
- 15 We're here for the patient. There is a clinical
- 16 reality around recruiting studies in this patient
- 17 population. A significant answer to that problem, I
- 18 think, is a single unifying endpoint that spans that
- 19 entire age range in the patient population. Thank you
- 20 very much.
- DR. KAUL: Thank you, Dr. Beardsworth, and
- 22 keeping on time.

```
1 Our next speaker is Linda Carr.
```

- MS. CARR: As he said, I'm Linda Carr, and
- 3 thank you for holding this meeting. It's very
- 4 important. It's helping our children with pulmonary
- 5 hypertension.
- I am not a medical professional. I am the
- 7 mother of a patient with pulmonary hypertension, and
- 8 I'd like to briefly tell you my daughter's story
- 9 today, put a face to all of this discussion. Hannah
- 10 is now 23 years old. She was diagnosed in 1993 with
- 11 idiopathic pulmonary hypertension at age 5. She had a
- 12 history of dizziness and fainting with exertion, which
- 13 brought us to the pediatrician and then the
- 14 cardiologist. They couldn't find anything for a long
- 15 time, several years.
- 16 Finally, the cardiologist did an echo which
- 17 diagnosed her pulmonary hypertension, and at that
- 18 point, he announced she had one to two years to live.
- 19 After some research, we found Dr. Barst in
- 20 New York and traveled there for her first visit with
- 21 Robyn. At age 6, Hannah had her first right heart
- 22 catheterization, which determined she was a responder.

- 1 She started calcium channel blocker therapy, which was
- 2 expected to be an effective treatment for her for
- 3 quite some time. And in addition, her symptoms
- 4 disappeared, the fainting with exertion, and she was
- 5 able to participate in all of her activities without
- 6 any restrictions. She was not limited in any way with
- 7 her exercise.
- 8 Surprisingly, at her next cardiac
- 9 catheterization after, I believe, one year, it showed
- 10 her PVR was not improved and her resting pressures had
- 11 not improved. The difficult decision was made based
- 12 on that catheterization to start her on Flolan, the IV
- 13 therapy. It wasn't even yet approved.
- 14 At the next cath, her pressure had returned
- 15 to basically normal after a period of time on the
- 16 Flolan. It was fantastic news. Even with the
- 17 cumbersome therapy, it was fantastic news. Hannah
- 18 remained on Flolan for 10 years, with a cath every few
- 19 years. I'm sorry I don't recall the exact intervals.
- 20 She transitioned to oral meds her senior year in high
- 21 school, and she has remained well on a variety of oral
- 22 and inhaled medications.

- 1 Hannah did try to take the exercise tests,
- 2 as was customary in New York from, the first visit at
- 3 age 6 and did the bike test that she could, and it's
- 4 obviously not effective with a 6-year-old. It's a
- 5 learning experience. And they were not effective for
- 6 several years. But eventually, the exercise testing
- 7 was very successful, and those tests and periodic
- 8 catheterizations along the way were used and still are
- 9 used to monitor her progress.
- To conclude, in 2009, this little girl who
- 11 was not supposed to live beyond age 8, graduated
- 12 college, married her high school sweetheart and
- 13 adopted a baby girl.
- 14 These youngest pulmonary hypertension
- 15 patients, our children, my friends' children, deserve
- 16 effective medications to help them live longer and
- 17 healthier lives. I thank you for your time today and
- 18 your efforts on behalf of all of these very special
- 19 children. Thank you.
- DR. KAUL: Thank you, Ms. Carr.
- 21 This concludes the open public hearing
- 22 portion of this meeting, and we will no longer take

- 1 comments from the audience. The committee will now
- 2 turn its attention to address the task at hand, the
- 3 careful consideration of the data before the
- 4 committee, as well as the public comments.
- Now, we are scheduled to start with the
- 6 committee discussions and questions to the committee
- 7 at about 2:00 p.m. We have 45 minutes left. This is
- 8 what I propose to do for these 45 minutes. The FDA
- 9 will get about three minutes for some clarifying
- 10 information, some additional data that will help
- 11 inform the discussion.
- The sponsor will get about two minutes to
- 13 make some clarifying statements, and Dr. Barst will
- 14 get about seven minutes to help focus the discussion
- when we stopped about the relationship between
- 16 exercise capacity indices and hemodynamics and
- 17 outcomes.
- 18 So we'll start off with the FDA.
- DR. BRAR: Satjit Brar, FDA. It was
- 20 mentioned by Dr. Rich earlier that we had initially
- 21 had the factor of RAP in our model, where, in essence,
- 22 we see on the left-hand side, again, the forest plot

- 1 looking at delta six-minute walk distance versus delta
- 2 PVRI, and on the right-hand side, the similar forest
- 3 plot looking at delta six-minute walk distance over
- 4 delta RAP.
- 5 As you can see, again, with the conclusions
- 6 I had earlier about pulmonary vascular resistance
- 7 index, it shows that qualitatively, it's all going the
- 8 same direction.
- 9 We also see this qualitatively with right
- 10 atrial pressure across the trials. Where we see an
- 11 improvement in right atrial pressure, we also see the
- 12 improvement of six-minute walk distance. And in
- 13 essence, what we do see -- and this is one of the
- 14 reasons, as well, why we want to pinpoint more PVRI
- 15 rather than RAP, because we see, on average, that it's
- 16 more consistent for PVRI versus RAP. That's one of
- 17 the reasons, that across trials that we see that PVRI
- 18 is more a significant relationship compared to RAP.
- 19 In addition, this other information about
- 20 RAP not being affected much in the pediatric
- 21 population that we thought held true essentially is
- one of the reasons why we took RAP out of the

- 1 equation. So in essence, RAP in adults does show a
- 2 consistent relationship for some trials. It does not
- 3 show a significant relationship, and this could be a
- 4 sample size issue. But for the most part, we took RAP
- 5 out of the equation essentially because that RAP, we
- 6 thought, was not going to be useful in the pediatric
- 7 population.
- 8 DR. KAUL: Would it also be fair to say that
- 9 it's less precise?
- 10 DR. BRAR: Yes. It is fair to say that RAP
- 11 itself is less precise than PVRI, correct.
- DR. KAUL: Okay. Do you have any additional
- 13 comments?
- DR. BRAR: That's the only thing I just
- 15 wanted to share with Dr. Rich.
- DR. KAUL: Okay. Does anyone on the
- 17 committee have any follow-up comment or question
- 18 regarding this?
- 19 Dr. Rich?
- 20 DR. RICH: Just a brief comment. I think
- 21 one of the reasons is because the elevation in RAP is
- 22 typically seen late. And as trials enroll less and

- 1 less sick people, which they have, you're not going to
- 2 see much of a change in it. But if we're talking
- 3 about adopting a biomarker of hemodynamics that will
- 4 kind of be as encompassing of the disease process at
- 5 all, I see no reason why not to include rather than
- 6 one or the other. I don't see that it's a tradeoff.
- 7 We can include them together in a formula.
- B DR. KAUL: Dr. D'Agostino?
- 9 DR. D'AGOSTINO: I may be misreading this.
- 10 But is the confidence interval affected by the scale
- 11 of the variable? This is the confidence interval on
- 12 the independent variable.
- DR. BRAR: It very well may be because --
- DR. D'AGOSTINO: So wouldn't you want some
- 15 kind of standardized --
- DR. BRAR: I would try to figure out then I
- 17 guess trying to standardize PVRI versus RAP. Is that
- 18 what you're suggesting?
- DR. D'AGOSTINO: Well, standardized by the
- 20 standard deviation or something like that. I may be
- 21 wrong, but the variability, I think, is affected by
- 22 this scale of the independent variable.

```
1 DR. KAUL: Point well taken.
```

- 2 Dr. Veltri?
- 3 DR. VELTRI: Just a question, since the
- 4 treatment of this disease apparently is going towards
- 5 polypharmacy, since there's three different types, I
- 6 understand your analysis was based on the double-blind
- 7 placebo-control, but there could have been background
- 8 therapy. Do you have any information on these
- 9 indices, where there was combination therapy as
- 10 opposed to, let's say, monotherapy? Because
- 11 obviously, the pendulum is swinging, and there's a lot
- 12 more room to go, as Dr. Rich noted, with the deltas
- 13 and the PVRI as opposed to the exercise.
- DR. BRAR: You are correct. Some of the
- 15 trials that we evaluated did have background therapy
- 16 that was, quote-unquote, "stabilized background
- 17 therapy," but the patients still were not doing well.
- 18 As far as differentiating between the relationship of
- 19 patients that were on background therapy versus just
- 20 pure placebo, I do not have that information here to
- 21 show you.
- DR. KAUL: Thank you.

```
1 At this point, I'm going to call on the
```

- 2 sponsor. Please keep on time. We'd like to start
- 3 with the questions at about 10 minutes.
- 4 MS. MCKAY: So I really just wanted to make
- 5 a brief statement, if I could. Listening to the
- 6 discussions this morning has been really helpful to
- 7 us, and we just wanted to remind you that regardless
- 8 of the debate around surrogacy, Dr. Stockbridge
- 9 mentioned this morning the possibility of changes to a
- 10 written request even at this stage of development.
- 11 For sildenafil, we still believe that
- 12 hemodynamics is an important measure and important
- 13 toward informing a change to our written request,
- 14 besides the discussion on surrogacy. Thank you.
- DR. KAUL: Thank you.
- 16 Dr. Barst?
- DR. BARST: You'll be pleasantly surprised,
- 18 I'll speak less than seven minutes. I wanted to
- 19 clarify several points that were raised prior to
- 20 lunch, and one is -- if I could have backup slide RB-
- 21 11.
- This is just an example of one study which

- 1 demonstrated a correlation and a relationship between,
- 2 in adult patients with PAH, distance walked in six
- 3 minutes versus the peak VO2. There also is data that
- 4 is published that demonstrates this same correlation
- 5 exists with children, however, only when the children
- 6 walk less than 300 meters, which precludes patients
- 7 such as those that were concerned about enrolling in a
- 8 placebo-controlled trial. But once the child walks
- 9 more than 300 meters, they still have a tight
- 10 correlation between peak VO2 and their pulmonary
- 11 vascular resistance.
- 12 The second point I wanted to make was
- 13 slide 42, and this is just to reiterate that the data
- 14 seen in the pediatric study, shown in mustard color,
- 15 and the data shown in the adults, in light blue, is
- 16 consistent with the treatment effect when we look at
- 17 percent change in exercise, whether we're looking at
- 18 percent change with six-minute walk of approximately
- 19 10 percent or the percent change in peak VO2 in the
- 20 children of approximately 10 percent. And they both
- 21 appear to correlate with what we've seen with the
- 22 plasma concentration.

```
1 The last point I'd like to make, as a
```

- 2 clinical investigator, is to reiterate what's been
- 3 said today, and that's that we rely extremely heavily
- 4 on hemodynamics. Whether it's a young child who
- 5 cannot exercise or an adult, they are very, very
- 6 critical to us in assessing how we should be treating
- 7 children. Thank you very much for the time.
- B DR. KAUL: Thank you, Dr. Barst.
- 9 We have the option of continuing asking
- 10 questions of the FDA and the sponsor and of each other
- 11 for the next 30 minutes or we can get down to the
- 12 business of asking the questions that are provided to
- 13 us. So can I see a show of hands? Does anybody have
- 14 additional clarifying questions?
- Okay. So nobody has any questions, other
- 16 than Dr. Rich, who wants to probably respond. Dr.
- 17 Neaton has one. Okay. Well, let's deal with those.
- 18 And Dr. Black. Okay. Let's start with Dr. Rich
- 19 first.
- 20 DR. RICH: I apologize for stealing the
- 21 microphone so much today, but I'm an invited guest and
- 22 I may never be on this panel again, so I figure it's

- 1 an opportunity just to kind of point out some issues
- 2 in this disease, which have been absolutely correctly
- 3 characterized as devastating, fatal, progressive,
- 4 because there's a lot of, I use the term, mythology
- 5 about what we're doing here.
- 6 The treatment algorithm that's been endorsed
- 7 by the experts in the field require a right heart
- 8 catheterization at baseline followed by acute
- 9 vasodilator testing to see if they're vasoreactive.
- 10 This arose from the perception back in the 1960s that
- 11 it's a disease of vasoconstriction, and there was an
- 12 early paper with acetylcholine showing vasodilatation.
- 13 If the patient is vasoreactive, they almost
- 14 always will get calcium channel blockers, because as a
- 15 vasodilator, it works. It's about 10 percent, so it's
- 16 a very small subset of the whole picture. And the
- 17 single center data, there's two, long-term 20-year
- 18 single center data suggests that their survival is
- 19 straight across. And so that's been reassuring.
- 20 Interestingly, if they do not have the
- 21 ability to vasodilate, they now are treated with a
- 22 vasodilator. And so it should be no surprise that you

- 1 can't lower the PA pressure very effectively with
- 2 these drugs, because if you could, they wouldn't even
- 3 be here. They would be on the calcium channel
- 4 blockers. So there's kind of a misperception about
- 5 that.
- 6 The average change in mean PA pressure in
- 7 these people across all trials is about a 2 to 3
- 8 millimeters of mercury. So when you consider that the
- 9 PA pressure is elevated 400 percent and you lower it 5
- 10 percent, that is unlikely the mechanism by which these
- 11 drugs make these people better.
- I think the data that they make them better
- 13 is clear. The real question is mechanism of action,
- 14 something that is really not the charge of the FDA to
- 15 elucidate. And there's been a lot of debate about how
- 16 these drugs clearly work. I can say, though, that
- 17 when the patients die, they die of right heart
- 18 failure. The PA pressure doesn't continue to go up.
- 19 The RV fails, the RA pressure goes up. They have
- 20 worsening exercise tolerance, and then they die.
- So if you go back and look at the mechanism
- 22 of action of these drugs, a lot of them have

- 1 cardiovascular actions, as well as others.
- 2 Prostacyclin clearly raises cardiac output in a dose-
- 3 response relationship. You can basically increase the
- 4 dose of intravenous epoprostenol and get the cardiac
- 5 output to go up along with it. Sildenafil recently
- 6 has been shown also to have pretty pronounced effects
- 7 on the RV, because you get selective increase in PDE5
- 8 in the right ventricle, in the filling right
- 9 ventricle. And my bias is it probably works on the
- 10 right ventricle in these people. Bosentan does not,
- 11 and that may be a distinguishing characteristic.
- 12 Epoprostenol also converts a failing RV from
- 13 glycolytic metabolism to aerobic metabolism.
- So there are lots of mechanisms of action
- 15 here, but what they don't do effectively is bring the
- 16 PA pressure back to normal. It's an issue for this
- 17 committee, I think, in the next generation of drugs
- 18 that are being developed, which are really looking at
- 19 the disease, tyrosine kinase inhibitors, trying to
- 20 change the proliferation of the pulmonary vasculature
- 21 directly as opposed to changing the hemodynamics or
- 22 exercise tolerance, and you may see totally different

- 1 results there.
- 2 But I will tell you that there has never
- 3 been a study showing that these drugs do anything to
- 4 the disease. They don't halt progression. They don't
- 5 cause regression. The data actually suggests the
- 6 opposite, that they have no effect on the pulmonary
- 7 vasculature itself. And so it's something to keep in
- 8 mind when we're talking about our endpoints and
- 9 biomarkers and surrogates and all of that, because I
- 10 think there's so much confusion about the pathobiology
- 11 of the disease and the natural history that the
- 12 clarification is necessary. Thank you.
- DR. KAUL: Thank you, Dr. Rich.
- 14 I'm going to call upon Dr. Rosenthal. He's
- 15 the card-carrying pediatric cardiologist, and I'd like
- 16 him to share his perspectives about what was just
- 17 commented upon.
- 18 DR. ROSENTHAL: Does that mean I can't ask
- 19 my question?
- 20 DR. KAUL: You can ask your question, as
- 21 well.
- DR. ROSENTHAL: Well, I've been taking this

- 1 all in, and I think there are -- I'm not sure that I'm
- 2 seeing the rub. I mean, it seems like we started off
- 3 many years ago embarking on a path using the six-
- 4 minute walk test as something that was supposed to be
- 5 important. And I'm not sure that now we're not trying
- 6 to find a more relevant and uniformly applicable
- 7 endpoint. And I think there is some importance to
- 8 that.
- 9 One of the questions that I have regarding
- 10 endpoints in kids that we haven't really discussed is
- 11 that many of these kids end up coming to transplant.
- 12 And there are decision trees that are used. There are
- 13 decision processes that are used in trying to figure
- 14 out when is the best time to pull the trigger. And it
- occurs to me that maybe some of the information that's
- 16 used in trying to arrive at the best timing for that
- 17 would also be relevant in this discussion of relevant
- 18 endpoints. We try and not transplant people for
- 19 anything before it's time.
- I haven't yet heard, but I'd like to ask the
- 21 experts around the table and on both sides of the
- 22 aisle to reflect on how these different clinical

1 endpoints and hemodynamic measurements are used to

- 2 make these decisions in kids.
- 3 DR. KAUL: Dr. Newman or Dr. Kawut?
- 4 DR. NEWMAN: I can't respond to that
- 5 question. As an adult pulmonogist, in the adult
- 6 pulmonary world, transplantation is the very last
- 7 thing that we want for a patient, and I don't think
- 8 that we have fixed endpoints beyond advanced Class 3
- 9 to Class 4 disease without remission, without diuretic
- 10 effect, without drug effect, because transplantation
- 11 is the acquisition of a second disease, as we all
- 12 know. It's not a cure. It may cure something, but it
- 13 creates another illness.
- So I can't really respond to your question
- 15 about pediatric transplantation, which is probably a
- 16 little more successful than adult transplantation.
- But I would like to respond. I think that
- 18 Stuart Rich makes excellent points. It doesn't
- 19 actually get us to the answer, though, which is that
- 20 the six-minute is an integrated function of the body
- 21 that includes hematology and the ability and
- 22 availability to disburse blood and fitness of the

- 1 muscles and ventilatory drives and the patient's
- 2 emotional state and their degree of -- and so it's a
- 3 very good integrated measure of something, but it's
- 4 not a very good measure of pulmonary vascular
- 5 function. And yet when pulmonary vascular function is
- 6 severely compromised, the six-minute walk is
- 7 compromised. And when pulmonary vascular function is
- 8 markedly improved, which, unfortunately, is rare, it
- 9 improves to a certain degree.
- 10 But the reason that I think we've all been
- 11 dissatisfied with that test is just for those reasons.
- 12 It has never been proven to correlate well with final
- 13 outcome. So I'm sort of worried about this issue of
- 14 substituting hemodynamics, which I think has been
- 15 beautifully and adequately shown today to associate
- 16 and correlate with the six-minute walk in a general
- 17 way, which is that you take one test that associates
- 18 with a test of soft specificity and sensitivity and
- 19 the risk then is that you're going to use it as a
- 20 substitute. So you take one test of uncertain
- 21 specificity and sensitivity with regard to outcomes
- 22 and use it to substitute for another test that we

- 1 don't like.
- If we were to decide to allow this to be
- 3 used in the pediatric age group below the age of 7 as
- 4 a substitute for the six-minute walk, I would hope
- 5 that the FDA would view this as a rigid exception to
- 6 the current practice, which is unsatisfactory, but for
- 7 which we have no solution.
- 8 Stuart Rich is a brilliant guy. He doesn't
- 9 have a solution to this problem nor does anyone at
- 10 this table, unless somebody is going to speak up.
- 11 Steve's a pretty smart guy, too.
- 12 So my big concern has to do with the
- implications of any decision we make downstream, which
- is do we open Pandora's box; does all of a sudden
- 15 everybody want to use hemodynamics as a measure of
- 16 efficacy? If you did that, you could get Lasix and
- 17 Zaroxolyn approved by the FDA for the treatment of
- 18 primary pulmonary hypertension, because they can
- 19 change RA pressure and cardiac output in an instant.
- 20 In fact, they're the most powerful drugs we have.
- 21 So we can't be fooled into thinking that
- 22 we're very close to the truth with any of these tests,

- 1 and we, therefore, have to be careful about getting
- 2 rigid in over-interpreting the information we get from
- 3 them.
- 4 So that's my sort of general view of where
- 5 we are right now, and I'm not sure that anybody here
- 6 is going to be able to improve on our understanding of
- 7 what's going on with these patients.
- DR. KAUL: Thank you, Dr. Newman. You have
- 9 very eloquently articulated one of my major concerns.
- 10 If we act in a given manner, are we running the risk
- of opening up the Pandora's box for other disease
- 12 conditions?
- Dr. Rosenthal?
- DR. ROSENTHAL: I just want to clarify. I
- 15 don't think transplant is a good idea, either. But I
- 16 think it's sort of a -- transplant is an outcome like
- 17 death. It's the end of the game. And so if there are
- 18 other combinations of clinically available data points
- 19 that can be used to help to predict the end of the
- 20 game, then I think that those should be considered in
- 21 a way that they're currently considered in the
- 22 clinical realm. That's my point.

- 1 DR. KAUL: Dr. Black?
- DR. BLACK: I had asked before we had lunch
- 3 about whether there were clinical things you'd like.
- 4 And I just would like to take my thumb in my hand now
- 5 and ask the question. Yes, it'd be great to have a
- 6 single efficacy endpoint, but is this it or is
- 7 anything we've heard today good enough to do that?
- 8 And I'm not persuaded just yet.
- 9 The other thing that's a little bit puzzling
- 10 to me is we heard about the grim prognosis, and yet we
- 11 also hear about an 80 percent survival and how someone
- 12 who is 5 years old is now married at 23. Those don't
- 13 exactly compute, and it seems like the situation has
- 14 been getting better without having a single efficacy
- 15 endpoint. So also, we heard that an echo seemed to
- 16 make this diagnosis. That's a little easier, I think,
- 17 than a cath. So I need some help from people who see
- 18 this disease to explain those things that I think are
- 19 a little discrepant to me.
- DR. KAUL: Dr. Barst, you mentioned that the
- 21 five-year median survival was 80 percent. But can you
- 22 sort of reinterpret that data for us and tell us about

- 1 the natural history? What is the median age of
- 2 demise?
- 3 DR. BARST: Yes. From natural history data,
- 4 the median length of survival after diagnosis to death
- 5 was less than one year. Looking at a number of
- 6 studies from around the world, including registry data
- 7 from 2007 when therapies were not available, there was
- 8 still a five-year survival of less than 30 percent.
- 9 The data that I reported of 80 percent 10-
- 10 year survival and similar studies of -- I think
- 11 there's a 90 percent five-year survival from another
- 12 center -- are based on using very aggressive
- 13 therapies, such as intravenous epoprostenol. There
- 14 are also registry data from other centers where the
- 15 five-year survival is not in the 90s, but it is 55 to
- 16 60.
- 17 It's my belief that the reason some of the
- 18 centers have had better survival is we've had to learn
- 19 along the way what's the best dose to use to treat
- 20 children with and we had to this without having hard
- 21 data that would help us immensely. So I believe that
- 22 having controlled data, for me, as a treating

- 1 clinician, is extremely important, because we cannot
- 2 say that children are just small adults and just use
- 3 the drugs off label without knowing what the safety is
- 4 or the right dosing.
- 5 DR. BLACK: I agree with you that it would
- 6 be great to have that, but you also told us how hard
- 7 it is to recruit people for these comparative trials.
- 8 So how does that work?
- 9 DR. BARST: If I could make one comment with
- 10 regard to the pediatric sildenafil trial, I was the
- 11 principal investigator for the study. And yes, it did
- 12 take us five years to enroll. Part of the reason it
- 13 took us five years to enroll is there was the
- 14 agreement that a certain number of children had to be
- 15 enrolled who could perform the cardiopulmonary
- 16 exercise testing.
- 17 If we had enrolled 200-plus children for
- 18 hemodynamics and then also performed cardiopulmonary
- 19 exercise testing in the children who would be able to
- 20 do it appropriately, that were developmentally able,
- 21 they did have exercise intolerance and they had no
- 22 history of syncope, we would have been able to perform

- 1 the study in a much shorter period of time, and we
- 2 would have been able to learn and get data about the
- 3 right dosing.
- As the data was shown to you by Dr. Ewen, if
- 5 we had just assumed that using the low dose that we
- 6 saw was effective in adults and went ahead and did
- 7 that with children, we would have no evidence of
- 8 efficacy, and we really would have been not giving
- 9 these children the treatment that they should have.
- 10 DR. BLACK: Were you thinking about planning
- 11 a study where you compared several agents to each
- 12 other or pony doses or combinations of things that we
- 13 hear people are using?
- DR. BARST: This was brought up by one of
- 15 the committee members. It has been the pulmonary
- 16 hypertension consensus and in the guidelines that I've
- 17 participated in writing that in the future,
- 18 placebo-controlled trials in treatment-naïve patients
- 19 are no longer considered ethical.
- 20 So all of our studies ongoing and designing
- 21 them will be add-on to standard of care background.
- 22 That would not preclude us from using hemodynamics as

- 1 a primary endpoint, as well as looking at exercise
- 2 capacity in the children who can do it. I fully
- 3 support that our adult studies need to continue to
- 4 have a primary endpoint that equates to feel better
- 5 and that we do hemodynamics as supportive data.
- DR. BLACK: Thank you.
- 7 DR. KAUL: Thank you, Dr. Barst.
- 8 Dr. Neaton?
- 9 DR. NEATON: Can I just ask, before I ask my
- 10 question to the FDA, to what extent does the longer
- 11 survival relate to improved, more timely diagnosis?
- 12 We've heard a couple examples where it may take some
- 13 time to kind of get the diagnosis right. It doesn't
- 14 relate.
- DR. BARST: That's something I wish I could
- 16 say has happened, because my colleagues and I have
- 17 spent an inordinate amount of time trying to increase
- 18 awareness and education to make the diagnosis earlier.
- 19 Unfortunately, we have been fairly unsuccessful with
- 20 this. From our early studies of the natural history
- 21 in the 1980s, the average time from onset of first
- 22 symptoms to diagnosis was 24 months.

```
1 Currently, the average time from onset of
```

- 2 symptoms to diagnosis is better than that, but it's 18
- 3 to 20 months. If we look at the hemodynamics and the
- 4 functional class at the time of diagnosis amongst the
- 5 pediatric and adult cohorts, we are not diagnosing
- 6 them particularly earlier in the course of the
- 7 disease.
- B DR. KAUL: Do you have your question,
- 9 Dr. Neaton?
- 10 DR. NEATON: My question is to Dr. Brar.
- 11 There was a question this morning that I just wanted
- 12 to make certain I understood the answer to, because I
- 13 think it's important. For the trials that you
- 14 included in your overview, how were those trials
- 15 selected and what's the universe of trials from which
- 16 they were selected from?
- DR. BRAR: The trials that we selected were,
- 18 one, patient population had to be WHO Class 1 and
- 19 incorporate idiopathic or familial PAH patients. In
- 20 addition, they were to have six-minute walk data at
- 21 baseline, and the six-minute walk distance is
- 22 generally taken over a few weeks, every few weeks

- 1 until the end of trial. But also, hemodynamic
- 2 measures had to be measured both at baseline and end
- 3 of trial. A lot of the other trials that we looked at
- 4 only did a baseline measurement.
- 5 DR. NEATON: That's fine. But I thought I
- 6 heard that -- this may be just my imagination -- that
- 7 these were trials which led to approval and there were
- 8 trials that did not lead to approval that were out
- 9 there that you didn't have.
- 10 DR. BRAR: Currently, what I know of the
- 11 trials that we have in the database, those are
- 12 primarily all approved drugs.
- 13 DR. NEATON: So we have a selection of
- 14 essentially trials for which overall in these studies
- 15 the six-minute walk difference differed significantly
- 16 between the treatment groups.
- 17 DR. BRAR: I do have a trial in our double
- delta analysis where actually you'll see a single
- 19 point back actually in the low left-hand quadrant.
- 20 This was a trial that was performed that failed both
- 21 on PVRI and six-minute walk distance. Primarily, it
- 22 was a drug that's already approved, but it was a very

- 1 low dose. So they didn't meet the criteria for either
- 2 PVRI or six-minute walk distance, so that was a failed
- 3 trial, actually.
- DR. NEATON: Do you have an estimate of how
- 5 many trials are out there that --
- DR. BRAR: Right now, in the FDA, we have a
- 7 total of 42 trials. But there are trials that are
- 8 involving CTEF patients, which is more of a
- 9 thromboembolic issue. There's also trials that
- 10 include connective tissue disease. We excluded those
- 11 trials because we didn't think those are
- 12 representative of what is in the pediatric population.
- 13 So it's prespecified. We specified that we want WHO
- 14 Group 1 that had idiopathic and familial hypertension
- 15 and that had complete efficacy data, meaning six-
- 16 minute walk distance at baseline and end of therapy,
- in addition to hemodynamic information that was at
- 18 baseline and end of trial.
- DR. KAUL: Thank you.
- Dr. McGuire?
- 21 DR. MCGUIRE: I just wanted to come back to
- 22 one of the very clarifying moments was the

- 1 presentation by Dr. Durmowicz, which we haven't, at
- 2 this committee, thought much about this pediatric
- 3 extension, and I think all of us are struggling with
- 4 trying to accept this as a surrogate.
- 5 But it's not really a surrogate. It's an
- 6 extension of the adult data into a population and
- 7 seeing the experience to date using PK and PD data
- 8 with loratadine and anti-retrovirals and argatroban
- 9 and other drugs.
- 10 These have all been unilaterally decided and
- 11 taken and accepted, even as little as PK data. And so
- 12 we're not trying to reprove the concept in a different
- 13 population. We're just trying to have acceptably
- 14 interpretable -- I think that's the terminology that
- 15 Dr. Stockbridge used -- acceptably interpretable data
- 16 to make some conclusions based on the adult data.
- 17 So I think we're confusing ourselves a lot
- 18 trying to figure out the very best hemodynamic measure
- 19 or measures to serve as surrogacy for clinical
- 20 efficacy as opposed to saying it's acceptably
- 21 interpretable that we can, with some confidence, say
- 22 that the same effects should be expected in children

- 1 as adults. And so for me, that was very clarifying
- 2 for the historical precedent in this domain.
- 3 DR. KAUL: If I recall, the term that was
- 4 used was "sufficiently interpretable." Does the FDA
- 5 have a quantitative or a qualitative definition of
- 6 what is sufficient?
- 7 DR. TEMPLE: The people who know the
- 8 pediatric rules will know this better than I do, but
- 9 in a number of them, it talks about the possibility
- 10 that data in adults would convince you that a drug
- 11 works in children. And sometimes you might just be
- 12 convinced without any further data, but one of the
- 13 things you might also do -- and it says this -- is
- 14 note that the pharmacologic effect seen in adults is
- 15 present in children and that the dose response or the
- 16 PK/PD relationships are similar.
- 17 So it doesn't talk in those things about
- 18 surrogates particularly, but it is using those
- 19 measurements for a drug you already know works
- 20 somewhere to extend it. And these are all related
- 21 matters, and I don't think we care what you call it.
- 22 We're just asking you about whether we should do this.

```
DR. KAUL: Anybody else? Dr. Halperin?
```

- DR. HALPERIN: Thank you. I'd just like to
- 3 follow up on a piece of Dr. Black's query that was not
- 4 addressed, and maybe just disabuse me in the absence
- 5 of a patient representative on our panel today.
- 6 Why not echocardiographic parameters, which
- 7 can give us some information about the right atrium,
- 8 right ventricle and estimates of pulmonary pressure?
- 9 And I'd perhaps just direct these to our experts on
- 10 the panel, Dr. Rich and Dr. Kawut.
- DR. RICH: I'll be happy to. Good point.
- 12 Let me clarify, number one, the Doppler estimate of RV
- 13 systolic pressure is fraught with inaccuracy. We just
- 14 did a trial which will be published soon. It's plus
- or minus 35 millimeters of mercury, and since you're
- 16 talking about an RV systolic pressure that starts
- 17 about 50, it's just way too inaccurate.
- 18 But RV function you can measure on echo or
- 19 other imaging modalities, and I think that that's
- 20 something that should be looked at. There are some
- 21 echocardiographic studies done in clinical trials
- 22 where they went back and analyzed it, and there was

- 1 some consistency with changes in right ventricular
- 2 function by a variety of Doppler measures other than
- 3 the pressure, something that certainly should be
- 4 looked at.
- 5 I think going forward, if a recommendation
- 6 is let's go prospectively and look at some biomarkers,
- 7 that should be one of them for sure, because I think
- 8 the data supports it. It certainly does predict long-
- 9 term outcome.
- DR. KAUL: Dr. Coukell?
- DR. COUKELL: I'd just like to ask for
- 12 clarification on one thing. We heard this morning
- 13 that at least in some centers, the mortality risk of
- 14 cardiac catheterization could be as high as 3 percent.
- 15 So if this measure were used either in the clinical
- 16 trial setting or in practice, would it result in any
- increase in procedures in these children over what's
- 18 being done now?
- DR. RICH: Three percent is totally
- 20 unacceptable. Let me just make a couple of comments.
- 21 These are sick kids, sick adults. It needs to be done
- 22 by experts, just like any invasive procedure. And so

- 1 in the wrong hands, anything is risky. But in the
- 2 right hands, I would say that whatever Robyn quoted is
- 3 probably where it's at. It should be once in five
- 4 years. In our experience in almost 10,000, we've not
- 5 had a single death.
- 6 So I think that's part of the issue, but
- 7 again, this committee has to understand that when you
- 8 approve something, that's going to be done in the
- 9 general practice, not only in specialty centers. So
- 10 that is a concern.
- The guidelines and the current adopted
- 12 practice should be that every patient, adult or
- 13 pediatric, gets a baseline right heart cath to confirm
- 14 the diagnosis. You need to measure wedge pressure.
- 15 You need to measure these other measurements. How
- 16 often or how frequent physicians use follow-up cath
- 17 data is highly variable. I think the big volume
- 18 centers do it more frequently than the small volume
- 19 centers for reasons of comfort and experience and
- 20 things like that.
- DR. KAUL: Dr. Rosenthal?
- DR. ROSENTHAL: I just would point out that

- 1 I don't think that the risk estimate of zero is
- 2 realistic. I mean, there are anesthetic risks and
- 3 other risks that kids with pulmonary hypertension have
- 4 to a greater extent than kids without it. And I think
- 5 it's not a trivial point.
- I think the answer to your question is that,
- 7 yes, the number of caths will go up if this is the way
- 8 we're monitoring our response to therapy, and there
- 9 might be a price to pay for that. Now, maybe it's
- 10 worth it to have good data and for all the reasons
- 11 that Dr. Barst pointed out earlier.
- 12 But I do think that even if the risk is
- 13 1 percent, that if, over a five-year period, people
- 14 are getting cathed eight times, the cumulative
- increase in risk is something that is worth paying
- 16 attention to in this discussion.
- 17 DR. KAUL: Steve?
- 18 DR. KAWUT: I guess I would be careful about
- 19 the decision we're making here compared to clinical
- 20 practice. I think the decision here is would it be
- 21 reasonable to base approval for children on
- 22 hemodynamics for drugs which have been approved in

```
1 adults. And we're talking about an exquisitely small
```

- 2 number of children in a very small number of studies.
- 3 So I hate to extrapolate that, if, depending
- 4 on the decision here, clinical practice will be
- 5 changed and we could increase morbidity and mortality
- 6 in the general population of kids with this condition.
- 7 So I guess I'd be a little careful about slating those
- 8 two.
- 9 DR. KAUL: Dr. Rosenthal?
- 10 DR. ROSENTHAL: I think that's a good point.
- 11 So I'm not trying to suggest that clinical practice --
- 12 that we should be making decisions regarding how best
- 13 to design studies to explore this issue based on the
- 14 potential impact on clinical practice. But I do think
- 15 it will impact clinical practice.
- DR. KAUL: Any more questions or comments?
- 17 If not, we will proceed with the business at
- 18 hand. The advisory committee is asked to opine on the
- 19 appropriateness of amending the pediatric written
- 20 request for sildenafil to treat children with
- 21 pulmonary arterial hypertension, also known as PAH.
- 22 Sildenafil currently has a written request

- 1 calling for a single study of the effect of sildenafil
- 2 on some unspecified clinical endpoint to support
- 3 extension of its indication from adults to children.
- 4 The study of exercise in young children has proven
- 5 difficult. FDA has pooled data from 13 studies on
- 6 hemodynamics and exercise in adults with PAH, and it's
- 7 considering making pulmonary vascular resistance index
- 8 an adequate basis for extending the indication to
- 9 children with PAH.
- 10 So the first question to the committee is --
- 11 as Dr. Marciniak said yesterday, the committee is
- 12 still having a platonic affair with --
- 13 DR. STOCKBRIDGE: You could start with those
- 14 questions again, if you were unhappy with those
- 15 answers.
- DR. KAUL: Does the FDA analysis show PVRI
- 17 to be a reliable predictor of effects of vasodilator
- 18 therapy on exercise capacity in adults with PAH? Just
- 19 answer the question that is being asked.
- Dr. D'Agostino?
- DR. D'AGOSTINO: I'd be happy to start with
- 22 my view on it. I think that the data that they have

- 1 presented does indicate that there's a relationship.
- 2 I don't think that we have enough data to know what
- 3 the relationship really is. I think the point that
- 4 Dr. Neaton has raised about not having some of the
- 5 negative studies, we may very well find in the
- 6 negative studies that we see the PVRI moving up, but
- 7 not the exercise, the six-minute walk test.
- 8 So I think we're stuck with some problems in
- 9 terms of saying do we have a full relationship
- 10 established.
- Some of the points that are interesting here
- 12 and useful here is that we don't have the validation,
- 13 the calibration that was raised at the very beginning.
- 14 I don't have a sense of the goodness of the R-square,
- 15 the standard error of estimate, the question about how
- 16 well this would perform in terms of discrimination. I
- 17 don't think that we would want to necessarily say we
- 18 believe the relationship if we didn't see something
- 19 like a receiver-operated characteristic curve or some
- 20 kind of cuts on when the six-minute walk test is
- 21 really telling us that we have seen a clinical
- 22 benefit.

```
1 The sort of idea that putting these all
```

- 2 together in what I'm used to seeing developing a model
- 3 versus what we have here, I think the presentation was
- 4 interesting, but not adequate for us to put a yes on
- 5 this question.
- 6 DR. KAUL: So let me reinterpret your
- 7 answer. The answer to this question is no. But if the
- 8 question were asked differently, was there an
- 9 association established, how would you answer that
- 10 question?
- DR. D'AGOSTINO: Well, I think they'd have
- 12 an association established. Pinning it down in terms
- 13 of adequacy or being able to use it for prediction of
- 14 effect size and things of that nature, I don't think
- 15 we have it yet.
- DR. KAUL: Dr. Neaton?
- DR. STOCKBRIDGE: One thing. There's at
- 18 least one unapproved drug in the set of 13 studies.
- 19 And there are at least two other failed studies in
- 20 that set of 13. So Dr. Brar didn't select out the
- 21 successful drugs or the successful trials in that set.
- DR. TEMPLE: Also, for anyone submitting an

- 1 application to us, they have to tell us about all the
- 2 studies. So there aren't any missing studies there.
- 3 There could be things where they just never bothered.
- 4 We might not know much about it then.
- 5 DR. KAUL: I think I heard Dr. Brar say he
- 6 had 42 trials and then --
- 7 DR. STOCKBRIDGE: Not with hemodynamic data
- 8 and exercise data. There have been 42 studies, but
- 9 not all of them have post-baseline hemodynamics.
- 10 DR. KAUL: Fair point.
- 11 Dr. Brar?
- DR. BRAR: That's one of the main points.
- 13 In addition, I want to clarify, and I apologize,
- 14 there's actually a drug that's involved with the
- double delta plot that is not an approved drug and
- 16 where we have, in total amongst those trials, there's
- 17 two of them that have actually failed.
- DR. KAUL: Dr. D'Agostino, does that
- 19 reassure you a little bit more?
- DR. D'AGOSTINO: Again, it's good to hear
- 21 that. That's not what I thought was said earlier. I
- 22 thought it was just approved studies. But it would be

- 1 very interesting -- and don't want to do it now -- but
- 2 to see where those dots fit on the curves and how well
- 3 you actually would be able to predict what goes in
- 4 those by some kind of cross-validation.
- 5 DR. KAUL: Did you see any deviation in the
- 6 relationship in those studies that were not approved?
- 7 DR. BRAR: Within the individual studies, I
- 8 saw the relationship still holds within those
- 9 individual studies. But if you're talking about
- 10 deviation from the ultimate complete patient
- 11 population -- is that the question, for clarification?
- DR. KAUL: Yes.
- DR. BRAR: Yes. So in essence, we did see,
- 14 because we're looking at a subset population of the
- 15 WHO Group 1 idiopathic familial patients, so there is
- 16 a little bit of deviation from what we found in terms
- of the analysis seen on the double delta plot versus
- 18 what's seen in the label.
- DR. KAUL: Dr. Neaton?
- 20 DR. NEATON: This is an important point, in
- 21 my mind, because you showed a very nice picture, your
- 22 slide 8, of the quadrants, kind of where there's

- 1 agreement and where there's misclassification. And I
- 2 agree with Darren. Whether you're talking about this
- 3 being a surrogate or just a substitute, you'd like to
- 4 have some degree of confidence that there's
- 5 concordance in the decision you'd make on the exercise
- 6 endpoint and the hemodynamic endpoint.
- 7 If everything is above the top two boxes and
- 8 almost nothing is down below, you're missing some very
- 9 important information. You're missing all the trials
- 10 that showed something negative on an exercise outcome,
- 11 but something positive on a hemodynamic one.
- DR. TEMPLE: Why do you think anything is
- 13 missing? There just weren't any of those. Why
- 14 wouldn't those -- for example, if a trial had a
- 15 favorable effect on exercise, we get it. The company
- 16 wouldn't care. That was the end of it.
- 17 DR. NEATON: I'm not worried about the
- 18 trials that were done that don't have favorable
- 19 effects on exercise, Bob.
- DR. TEMPLE: Okay. But you only know half
- 21 of what you want to know. But what you know that is
- 22 among the trials that had a favorable effect on

1 exercise, they also had the hemodynamic effect. Now,

- 2 could there be something that had a wonderful
- 3 hemodynamic effect and no effect on exercise?
- DR. NEATON: That's what we don't know.
- 5 DR. TEMPLE: And that's what we don't have.
- DR. NEATON: But actually, even for the
- 7 first part of what you said, I'm not confident about
- 8 that. From the graph that was put up, that's clearly
- 9 not the case. On that colored graph, there are trials
- 10 that had seemingly large --
- 11 DR. TEMPLE: Yes.
- DR. NEATON: -- but that's potentially a
- 13 power issue because of the selection that you chose
- 14 that needs to be figured out.
- DR. TEMPLE: Actually, I wanted to ask both
- 16 you and Ralph. Is this a question about where to draw
- 17 the line that tells you enough? For example, up on
- 18 the left-hand side of the line, where there's an
- 19 effect on both of them, that sort of is comforting.
- 20 But down over on the right side of the line, there are
- 21 some pretty small effects and not much. I mean, if
- 22 you believe there's a relationship shown, that still

- 1 leaves open the question of where you draw the line,
- 2 where you say I have enough effect.
- 3 DR. D'AGOSTINO: Let me take a crack at it
- 4 first. My concern is that there is the bottom
- 5 quadrant which we don't have any data. But some of
- 6 the failed trials may show an effect on the
- 7 hemodynamic parameters, but not on the walk test. And
- 8 I would really want to have some comfort that we have
- 9 trials -- well, we don't have any trials, that just
- 10 doesn't exist, as opposed to maybe they're out there
- 11 and we just don't have them in the pool.
- DR. TEMPLE: Just remember, they can't be
- 13 out there for the drugs that we've looked at, because
- 14 somebody would have had to tell us. This would be a
- 15 drug that's been studied and never showed exercise, so
- 16 nobody submitted it.
- DR. D'AGOSTINO: Exactly, exactly.
- DR. KAUL: Dr. McGuire?
- DR. MCGUIRE: Yes. Along those lines, my
- 20 concern is the opposite, as you mentioned, Dr. Temple,
- 21 is that studies where the PVRI improved, but not the
- 22 functional capacity. And, for example, anything that

- 1 lowers mean arterial pressure, raises left atrial
- 2 pressure, increases cardiac output or increases weight
- 3 is going to improve the PVRI, but may or may not
- 4 effect the six-minute walk test. And so this is a
- 5 very complex integrated parameter that we're talking
- 6 about, the PVRI, as Stu was talking about earlier,
- 7 too. It may be all cardiac output. It may be all
- 8 left atrial pressure changes, and we just don't know
- 9 in this disease state.
- 10 So if people had missed the functional
- 11 endpoint, I'm not so sure the FDA would have gotten
- 12 those data. Maybe they have. But that's my concern
- 13 that we may be missing something.
- DR. TEMPLE: No, you're quite right. If
- 15 they didn't think they had a basis for a claim, we
- 16 might not have seen those in any detail anyway.
- 17 DR. KAUL: Dr. Veltri?
- DR. VELTRI: Just to clarify. In the
- 19 universe of trials that the FDA has seen, there's 42,
- 20 are there any trials missing from the 13 where you had
- 21 both paired baseline and completer? Is this the
- 22 universe of data in all those trials where you had the

```
1 paired exercise and hemodynamics? So there's no
```

- 2 trials, at least that the FDA has seen, that are not
- 3 included.
- DR. GOBBURU: That's correct.
- 5 DR. KAUL: Dr. Gobburu?
- 6 DR. GOBBURU: Yes. I would also like to
- 7 make two points to Dr. D'Agostino's comment. That is,
- 8 in the double delta plot that Dr. Brar showed, PVRI
- 9 versus six-minute walk, there are 18 bubbles in that
- 10 graph. Four of those bubbles represent doses or drugs
- 11 not approved, which are towards the lower quadrant or
- 12 lower portion of the changes, first point.
- 13 The second point is that it is true that
- 14 that sponsors will not submit submissions unless they
- 15 believe that there is some kind of indication, an
- 16 effect for us to consider market access approval.
- 17 Having said that, unless we think that a drug can be
- 18 inferior to placebo, you cannot have any other
- 19 relationship other than that was shown by Dr. Brar,
- 20 because the placebo data were included and we have
- 21 separated acting versus placebo arms, and it is still
- 22 the same relationship that holds good. So I don't

- 1 understand what failed trials will add to that data.
- DR. D'AGOSTINO: Well, I think it would add,
- 3 because it's possible for you, as Dr. McGuire was
- 4 saying, to raise one parameter, PVRI, without
- 5 necessarily improving the walk test.
- DR. KAUL: I think it would be helpful,
- 7 Elaine, if we can have that slide back up, Dr. Brar's
- 8 slide. Do you remember what the number of it was?
- 9 Number 9, thank you.
- DR. KRANTZ: Can I ask a question while we
- 11 wait, Sanjay?
- DR. KAUL: Go ahead.
- DR. KRANTZ: Just to clarify, there is no
- 14 secondary pulmonary hypertension studies where we have
- 15 measurements whatsoever, collagen vascular disease, et
- 16 cetera?
- DR. BRAR: We do have studies that show
- 18 secondary pulmonary hypertension trials that did
- 19 measure some hemodynamic measures, but they did it
- 20 primarily at baseline and not end of trial.
- 21 So I was trying to get, ideally and first
- 22 and foremost, I wanted to get a time course. Does the

- 1 time course of the PVRI relate to the time course of
- 2 the six-minute walk distance? Unfortunately, the
- 3 hemodynamic measures that are collected in these
- 4 trials are seen only at baseline and end of trial. So
- 5 I specified in my analysis that I looked at the trials
- 6 that had both baseline and an additional hemodynamic
- 7 measure, which is primarily at end of trial.
- B DR. KAUL: Done concomitantly, same day?
- 9 DR. BRAR: Same day, so same visit.
- DR. KAUL: Dr. Neaton?
- DR. NEATON: So going back to this chart,
- 12 which I think was a very informative analysis, so that
- 13 the big orange circle, the two green ones, the medium-
- 14 sized blue one, those are all trials that had a failed
- 15 six-minute walk, but there were no differences between
- 16 treatment and control.
- DR. BRAR: A failed six-minute walk so --
- 18 DR. NEATON: So basically, they're sitting
- 19 on zero.
- 20 DR. BRAR: Yes, you are correct. So those
- 21 had a failed six-minute walk distance, and those are
- 22 the doses essentially that were the --

DR. NEATON: A big change in hemodynamic and

- 2 nothing in --
- 3 DR. BRAR: Correct.
- DR. KAUL: Dr. Neaton, the answer to the
- 5 question is?
- DR. NEATON: Well, I think I'd go back to
- 7 the question I had this morning that I think -- and
- 8 maybe it's kind of like what Ralph said -- that we
- 9 have an extremely informative interim analysis here,
- 10 and so we should continue this work. But we're not
- 11 there to stop the trial yet. And so I'd like to know
- 12 kind of two things.
- 13 Am I going to make the same decision on
- 14 what's been used in previous studies in adults kind of
- if I was to use the hemodynamic measurement? And this
- 16 suggests that I might not. I might make a very
- 17 different decision in some of those trials. And that
- 18 might be good. That might be bad. That's something
- 19 to talk about. I'd like to kind of have that
- 20 quantified.
- 21 Then we also need to know, as Ralph kind of
- 22 started out this morning, if you took the Pfizer study

- 1 and pulled this out of here, how well would you
- 2 predict it based on this graph right here, this
- 3 relationship. And actually, that's something you
- 4 could do for each of these trials, which would be very
- 5 informative, is to understand kind of how well you
- 6 predict, based on this model, what the result would be
- 7 versus what you actually observed.
- 8 So that's a very key step, in my mind, that
- 9 kind of goes back to the comments that were made
- 10 earlier about establishing surrogacy, and I see
- 11 Darren's point about surrogacy. So let's just say
- 12 establishing that this is a reasonable substitute.
- 13 DR. D'AGOSTINO: I don't find that there's
- 14 anything with what has been done. I just think, what
- 15 Jim was just saying, I don't think it's complete. I
- 16 don't think we have enough comfort. Taking that
- 17 orange blob out of there and fitting the remaining
- 18 ones and then trying to predict that, it's not going
- 19 to predict that well. So it's that type of issue that
- 20 I think we need to go through.
- It's not to say that, again, what we've been
- 22 presented is wrong. It's just that there are still

- 1 questions that remain; to make a judgment that is all
- 2 there is, I think, impossible for me.
- 3 DR. KAUL: We have two expert statisticians
- 4 who are used to looking at these data. If I'm
- 5 interpreting them correctly, they're not convinced
- 6 whether the model helps reliably predict. I happen to
- 7 concur with both of them. I think the model needs to
- 8 be developed better and more optimally characterized,
- 9 and some of the things that were brought up have
- 10 already been discussed.
- Is there anybody on the committee that feels
- 12 otherwise?
- 13 Dr. Black?
- DR. BLACK: I just wanted to say that the
- word that I'm hung up on is "reliable," which you
- 16 brought up. And I think, as you say, it doesn't seem
- 17 reliable to me just yet.
- DR. KAUL: Anybody that has another
- 19 perspective on this? Otherwise, we'd like to proceed.
- Dr. Temple?
- DR. TEMPLE: Well, I just want to ask the
- 22 question. See, I don't know which those orange balls

- 1 are, and I don't know whether they were erroneous
- 2 maybe. The next one showed that it really did work
- 3 and the study was just wrong in its exercise
- 4 assessment, and I can't tell from that.
- 5 But does that permit one to look at a double
- 6 delta PVRI, say, greater than 500 and say I know
- 7 something or is that too little data? That's what I
- 8 was asking before. Down at the lower ends, there's
- 9 obviously some scatter and noise and some things where
- 10 there's a disparity in results, all the ones along the
- 11 line. I just wondered if that also applies to the
- 12 larger values.
- DR. KAUL: Have you done those analyses?
- DR. GOBBURU: Well, before we can comment on
- 15 that, I want to make a comment just to be clear what
- 16 the question we're asking is. The question is, to
- 17 me -- and somebody can correct me if I'm wrong -- if
- 18 we made a decision to approve a drug based upon double
- 19 delta, mean change in double delta six-minute walk
- 20 distance, would we put a placebo on the market for
- 21 pediatrics? Given if it is approved in adults, it's a
- 22 yes or no question. We don't differentiate on the Y

- 1 axis the orange ball, which is 5 meters. We approved
- 2 a drug with 5 meters. We also approved a purple ball
- 3 with 50 meters. FDA does not require that they are
- 4 distinguished between 5 versus 50 in terms of making a
- 5 determination of whether the drug works or not.
- 6 So it's a binary outcome, I think, that it
- 7 makes sense for you to deliberate on, saying would we
- 8 make a yes or no mistake in a drug approved in adults
- 9 to be considered for approval in pediatrics based on
- 10 the hemodynamics. That's the first question.
- 11 The second question is, yes, now since we
- 12 have shown quantitative data, now we can start
- interpreting maybe what type of double delta would
- 14 lead to double delta six-minute walk. Those are two
- 15 different questions.
- DR. KAUL: For the purposes of record,
- 17 please identify yourself.
- 18 DR. GOBBURU: My name is Joga Gobburu. I'm
- 19 the Director of Division of Pharmacometrics at the
- 20 FDA.
- 21 DR. KAUL: Dr. Neaton, and then Dr. Temple.
- DR. NEATON: The first question, I think

- 1 that is an important thing to address, that binary
- 2 question. And so I would not say, in and of itself,
- 3 it's all you want to do. I would have started exactly
- 4 like you did here, which is kind of a very nice
- 5 analysis in terms of the overall association. But
- 6 it's the next step in that summary which I think is
- 7 missing.
- B DR. KAUL: Dr. Temple?
- 9 DR. TEMPLE: Well, what I thought Jim and
- 10 Ralph were saying is that judging from these data,
- 11 some of the time, namely, those ones along the line,
- 12 the two orange and maybe the two are too small to
- 13 worry about. But at least some of the them, you would
- 14 actually declare it effective based on the double
- delta PVRI, and you'd have been wrong, because there
- 16 really was no change in six-minute walking distance.
- 17 And that's the answer to Joga's question, I think.
- 18 That is, in fact, what you're worried about. It
- 19 obviously wouldn't happen often, but it might happen
- 20 sometimes, and that's what you're saying these data
- 21 might tell you.
- I think it will help us to see a little more

- 1 what studies those actually are, but we --
- DR. KAUL: I think all three of us are
- 3 pretty much articulating that.
- DR. TEMPLE: But that's what you're saying.
- 5 DR. KAUL: The model that has been developed
- 6 is in the right direction. It has not been optimally
- 7 characterized. The information that we would have
- 8 sought was discrimination, calibration, and, more
- 9 importantly, just what you mentioned,
- 10 reclassification. Are we reclassifying these patients
- 11 correctly or incorrectly?
- 12 Dr. Krantz?
- 13 DR. KRANTZ: One word of caution. What are
- 14 we reclassifying for? There is no gold standard.
- 15 That person on the line may be having a lower
- 16 mortality. We just don't know. So I think, again,
- 17 we're taking two independent things and creating an
- 18 association and it's not really biological prediction.
- DR. TEMPLE: Our proposal here is that it
- 20 might or should or it's supposed to tell you what
- 21 would happen had they been able to exercise. This
- 22 just might have wonderful things to do with survival.

- 1 We don't know that. But I'm just trying to be sure I
- 2 understand the reservations, and that's my
- 3 understanding of it, that at least at the lower
- 4 levels, but maybe not the higher levels of delta delta
- 5 PVRI, you're saying there's sometimes a disparity
- 6 between the effect that was seen on the hemodynamic
- 7 measure and the effect that you're proposing to
- 8 conclude would be there on the exercise measure.
- 9 DR. KAUL: Dr. Stockbridge, and then the FDA
- 10 staff.
- DR. STOCKBRIDGE: Dr. Barst thinks she can
- 12 give you some perspective on the big orange dot close
- 13 to zero.
- DR. KAUL: Thank you.
- Dr. Barst?
- DR. BARST: As an investigator in that
- 17 study, that was a post-registration study, and the
- 18 purpose of the study was to assess could we get a
- 19 significant improvement in hemodynamics in patients
- 20 who had very little exercise intolerance to start
- 21 with, and that was the purpose. So we did not
- 22 anticipate a clinically significant improvement in

- 1 six-minute walk. That was not the primary endpoint.
- DR. JADHAV: Actually, I can supplement
- 3 that. My name is Pravin Jadhav with the Division of
- 4 Pharmacometrics. Just to supplement that, that most
- 5 of the PDE5 or the prostacyclin doses that are used
- 6 clinically or approved labels are having double delta
- 7 six-minute walk distance improvement about 20. So
- 8 really, if you look at that plot, PVRI improvement of
- 9 400 is almost meaningless from where we look at drugs,
- 10 at least most of the approved drugs. So if you are to
- 11 draw the line, I think at least I started looking at
- 12 it from the middle of that plot and then coming down.
- 13 So these data do show 200, 300 changes in PVRI have no
- 14 meaning in six-minute walk distance, because those
- 15 doses are not used clinically.
- I just wanted to make the clarification,
- 17 because that's relevant to the question Dr. Neaton was
- 18 asking, would I make a different decision using PVRI
- 19 and six-minute walk distance, because you already can
- 20 see that most doses are up there.
- DR. KAUL: Before Dr. Neaton and
- 22 Dr. D'Agostino respond to that, Dr. McGuire?

```
1 DR. MCGUIRE: Another point I don't think
```

- 2 we've discussed today is the difference between the
- 3 classes and even between the individual agents in the
- 4 classes. I know we saw a qualitative forest plot that
- 5 they're qualitatively similar, but there are important
- 6 numeric differences.
- 7 Especially here, if you just visually
- 8 regress through those different colored dots, you get
- 9 extremely different relationships. And so one could
- 10 query whether this should be a class-specific or even
- 11 a data-derived drug-specific consideration.
- DR. KAUL: Dr. D'Agostino?
- DR. D'AGOSTINO: If I heard correctly about
- 14 that study, then why in the world was it included?
- 15 It's these types of things that are really bothersome
- 16 in terms of trying to give a blessing on this. And
- 17 the other question, if you threw out below the 400,
- 18 you'd get a straight line that would have no slope.
- 19 So you can say if I'm in that range, I feel very
- 20 comfortable about a change in the walk, but in terms
- 21 of trying to get a relationship on how the PVRI
- 22 changes with the walk, you wouldn't really have it

- 1 anymore.
- 2 DR. KAUL: Dr. Neaton, do you have anything
- 3 else to add?
- DR. NEATON: I was going to say the same
- 5 thing.
- 6 DR. KAUL: Dr. Halperin, and after that,
- 7 Dr. Temple, and we'd like to move on. We've got to
- 8 tackle seven questions.
- 9 DR. HALPERIN: Clearly here, the issue has
- 10 just been elucidated. It's that we are looking for a
- 11 reliable surrogate for a fundamentally unreliable
- 12 index of disease severity. The same applies to
- 13 asymptomatic patients as would apply to adults who are
- 14 nonambulatory for some reason, that they will be at
- 15 the extremes of function, in perfect fit to the PVRI
- 16 curve, and I think we're seeing that exposed to some
- 17 extent in these data.
- 18 DR. KAUL: Thank you. Dr. Stockbridge and
- 19 Dr. Temple, does that help you with the answers to
- 20 this question? Not the answers you were looking for,
- 21 but does that help you?
- DR. TEMPLE: Well, I still have one more

- 1 question for Ralph.
- 2 Just because you only consider effects on
- 3 delta delta PVRI of above, say, 400 to be
- 4 unequivocally related to a benefit doesn't mean you
- 5 shouldn't use the whole curve to draw the line. So I
- 6 don't think I buy that last --
- 7 DR. D'AGOSTINO: Well, except that if we
- 8 think the ones below are unreliable, then --
- 9 DR. TEMPLE: Unreliable in that given the
- 10 smaller effect, they're not as predictive as you'd
- 11 like them to be.
- DR. D'AGOSTINO: But having a population
- 13 where you anticipate no ability to measure the six-
- 14 minute walk test, I mean --
- DR. KAUL: Dr. Stockbridge, was that
- 16 helpful?
- DR. STOCKBRIDGE: I think that was helpful.
- DR. KAUL: We move on to the second
- 19 question. If a drug has been documented to improve
- 20 exercise in adults with PAH, can PVRI be used to
- 21 extend that indication to another subpopulation of
- 22 adults? I just want to make sure we understand this

- 1 question. Another subpopulation means other than the
- 2 WHO PAH, but still including PAH or exclusive of PAH?
- 3 DR. STOCKBRIDGE: The suggestion was to see
- 4 if you were ready to take the smallest possible step I
- 5 could imagine, which was you've got a drug approved,
- 6 you understand its relationship between hemodynamics
- 7 and exercise in some group of adult PAH patients. Can
- 8 you use it to get you into another group of adults?
- 9 DR. KAUL: With heart failure?
- 10 DR. STOCKBRIDGE: No. With PAH of a
- 11 different variety than you have previously studied.
- DR. KAUL: Okay. So the question is
- 13 constrained to the population of PAH, but other than
- 14 WHO 1. Thank you for that clarification.
- 15 Dr. Rich?
- DR. RICH: No. You're really going into
- 17 shark-infested waters here. Patients with lung
- 18 disease are generally limited more by their
- 19 ventilatory insufficiency and hypoxia than they are by
- 20 hemodynamics, number one.
- 21 Number two, these drugs often will worsen VQ
- 22 mismatch and worsen gas exchange in patients with lung

- 1 disease. In patients with left ventricular diastolic
- 2 heart failure, they will not uncommonly put them in
- 3 pulmonary edema and create an acute crisis. So I
- 4 would be really reluctant to go beyond this one
- 5 category.
- DR. STOCKBRIDGE: None of that's PAH.
- 7 DR. RICH: All right. Well, within the
- 8 category of PAH, you've kind of covered it, so I can't
- 9 imagine what we're talking about. Clearly, if you
- 10 subset out the connective tissue diseases in PAH,
- 11 because they've been enrolled in trial, but not used
- 12 by themselves, they don't do well and, in fact,
- 13 studies that have looked at them by themselves
- 14 generally fail. And a lot of us think it's because of
- 15 lung involvement as opposed to pulmonary vascular
- 16 involvement that's coexistent with it. So I think you
- 17 have to be really, really careful at this point to be
- 18 able to take that leap of faith.
- DR. KAUL: Dr. Newman?
- 20 DR. NEWMAN: I agree. This group includes
- 21 liver disease, scleroderma-like disease, congenital
- 22 heart disease, HIV. These patients all behave

- 1 differently. Scleroderma has a terrible outcome
- 2 compared to idiopathic PAH. It would be a mistake to
- 3 extrapolate, in my opinion.
- 4 DR. KAUL: Dr. Kawut?
- DR. KAWUT: I have to agree. And also, in
- 6 that these patients all have underlying diseases,
- 7 which you may improve their pulmonary vascular
- 8 disease, but they may die and have limitation from
- 9 their underlying disease and so you've done no actual
- 10 benefit for the patient. So you'd really want to
- 11 prove that it improves some clinical outcome in these
- 12 other individuals.
- DR. TEMPLE: No, that's not correct. You
- 14 may or may not save their lives. We don't save a
- 15 whole lot of lives in a lot of conditions. But we
- 16 might improve their comfort for a period of time, and
- 17 that is a sufficient basis for approval if you believe
- 18 that it's been shown.
- DR. KAWUT: I totally agree, but by
- 20 improving their PVR, you may not improve their comfort
- 21 or their quality of life.
- DR. TEMPLE: That's the question, not

```
1 whether we've saved their lives.
```

- DR. KAUL: Dr. Rosenthal?
- 3 DR. ROSENTHAL: I didn't have a question.
- DR. KAUL: The answer to the question, your
- 5 answer to the question.
- DR. ROSENTHAL: I don't have an answer for
- 7 it.
- 8 DR. KAUL: Dr. McGuire?
- 9 DR. MCGUIRE: Yes. And I think that's
- 10 clarifying. This question was intended to take the
- 11 smallest possible step, but because of the disparity
- in the pathobiology of the other types of PAH, I think
- 13 it's a much smaller step to extend it to the pediatric
- 14 population than to extend to across the adult
- 15 population.
- DR. KAUL: Dr. Halperin?
- DR. HALPERIN: I believe that it depends on
- 18 the definition of subpopulation. If it's a
- 19 subpopulation defined on the basis of the same
- 20 criteria for type or etiology of pulmonary
- 21 hypertension, than I think it could be applicable, but
- 22 if we switch to a different etiology, a different

- 1 pathogenesis and different pathophysiology, then I
- 2 would say the answer is no.
- 3 DR. KAUL: Dr. Venitz?
- 4 DR. VENITZ: I'm concerned primarily about
- 5 the congenital etiology, so I would say, no, you
- 6 cannot extend it.
- 7 DR. KAUL: Dr. Black?
- BDR. BLACK: I also think no. I think this
- 9 is a real collection of things, some of whom we may
- 10 help, some of whom we may hurt, and I think it's a
- 11 little early to do that.
- DR. KAUL: Anybody on the committee that
- 13 answers yes?
- 14 Dr. Rich?
- DR. RICH: I just want to remind the agency
- 16 that the characterization of Category 1, the original
- 17 category PAH, has undergone four changes since it
- 18 first came out. And so things go in and things go out
- 19 of it all the time. And so when we talk about
- 20 subpopulations, there's inconsistency amongst that, as
- 21 well.
- DR. KAUL: Dr. Stockbridge, does that help?

```
1 DR. STOCKBRIDGE: Yes.
```

- DR. KAUL: Moving to question number 3, is
- 3 PAH in children sufficiently similar to the disease in
- 4 adults to allow PVRI to be used to bridge the adult
- 5 indication to children? In particular, please comment
- 6 on whether there are important differences between
- 7 adults and children with PAH with respect to etiology
- 8 of disease, symptoms of PAH, clinical course of PAH
- 9 and hemodynamic effects of PAH.
- 10 I'm going to call upon the experts here on
- 11 the committee to weigh in. Dr. Rosenthal?
- DR. ROSENTHAL: So for this one, I do think
- 13 that based on the information that's been provided,
- 14 that if we believe that PVRI is a reasonable outcome
- in adults, that it should also be considered a
- 16 reasonable outcome in children.
- DR. KAUL: Dr. Newman?
- 18 DR. NEWMAN: There are clearly differences,
- 19 but there's enough similarity that the association
- 20 appears to be true, the association of exercise and
- 21 PVRI. So clearly, in children, there's more
- 22 congenital heart disease. There are clear-cut

- 1 differences. The PVRs are slightly different, but the
- 2 general trends are similar with regard to responses.
- 3 So I would say yes, with the caveat that subgroups and
- 4 cohorts within those groups don't behave the same.
- 5 DR. KAUL: Dr. Rosenthal?
- 6 DR. ROSENTHAL: Well, I would just follow-up
- 7 that I agree with that point. I was referring
- 8 specifically to the case of primary pulmonary
- 9 hypertension and not pulmonary hypertension that's
- 10 secondary to congenital heart disease.
- DR. KAUL: Dr. Temple?
- DR. TEMPLE: Let me make sure, Norm, that I
- 13 understand, because there's confusion in the two
- 14 answers. This does not go to the question of whether
- 15 you believe the relationship is well enough
- 16 established to do it. It's if you did believe the
- 17 relationship was well enough established, are the
- 18 diseases similar enough to make the jump. So it's
- 19 really what you answered. You said yes, the diseases
- 20 are close enough if I believed it. Okay?
- 21 DR. KAUL: That's Dr. Rosenthal's answer,
- 22 right?

```
DR. TEMPLE: Yes, he answered, but it's not
```

- 2 a perfect question.
- 3 DR. KAUL: Dr. Rich?
- DR. RICH: With etiology, there are big
- 5 differences. Remember, in pediatrics, it's mostly
- 6 congenital and some idiopathic. In adults, it's
- 7 rarely congenital, a lot of connective tissue disease.
- 8 Symptoms are similar. Clinical course, a little less
- 9 consistent because of some stage biases between kids
- 10 and adults and conditioning in the right ventricle.
- 11 Hemodynamics, we think, are very similar.
- DR. KAUL: Thank you.
- Dr. Kawut?
- DR. KAWUT: I think we can quibble about the
- 15 details, actually nicely laid out, but in the end, I
- 16 think this is the same disease.
- DR. KAUL: Anybody else have a different
- 18 opinion or any comment? If not, was that helpful?
- DR. TEMPLE: What's been said, I think, is
- 20 that if you bought the whole relationship and
- 21 everything, that would be useable. The question is
- 22 whether you --

- 1 DR. KAUL: Question number 4. Please
- 2 comment on the following aspects of studying
- 3 hemodynamics in young children. Number one, is it
- 4 technically feasible; and, number two, do the risks of
- 5 collection of hemodynamic data in children raise
- 6 ethical concerns?
- 7 And I will again start off with
- 8 Dr. Rosenthal.
- 9 DR. ROSENTHAL: I think it's feasible. It's
- 10 done all the time, particularly in the study context.
- 11 I think it's feasible. I think the ethical questions
- 12 as to whether the information that's obtained is worth
- 13 the risk, the ethical questions that arise, it's
- 14 probably a more complicated issue than what we can
- 15 address here. And I'm certainly not a ethicist, so I
- 16 don't want to sort of weigh into all the different
- 17 ethical considerations.
- 18 My sense is that it will be; that if you see
- 19 the risks that go along with diagnostic
- 20 catheterization as part of the cost of identifying an
- 21 effective therapy for an otherwise horrible disease
- 22 with high lethality, that you would be able to justify

```
1 the risks based on the potential benefit. But I would
```

- 2 defer for more in-depth conversation of that topic
- 3 with Skip Nelson or some of the ethicists over on the
- 4 ped side.
- 5 DR. KAUL: Dr. Kawut?
- 6 DR. KAWUT: The first part, I would say,
- 7 obviously, yes, it is technically feasible. For the
- 8 second part, certainly, this entails risk, as does
- 9 being in a clinical trial, as does having this disease
- 10 without proven therapies. And so I think it's
- 11 reasonable to burden study subjects, children and
- 12 their parents, with potential risks of hemodynamic
- 13 measurements for really the same reason that they're
- 14 in this study, which is altruism, because we need to
- 15 know if these drugs work in children and the only way
- 16 to find that out is by doing it this way.
- 17 The other justification for collecting
- 18 hemodynamic data is that it would let you do the
- 19 smallest trial necessary. You most likely would not
- 20 have to do a 200-person trial in order to find these
- 21 hemodynamic findings, which you might have had to do
- 22 to get your exercise findings. So that decreases the

```
1 risk and even perhaps increases the justifiability of
```

- 2 using this technique, because you're going to put the
- 3 fewest number of individuals into your study.
- DR. KAUL: So in your mind, you don't have
- 5 any concerns about ethical issues?
- DR. KAWUT: Yes. I don't.
- 7 DR. KAUL: Dr. Newman?
- 8 DR. NEWMAN: Feasible, yes; ethical
- 9 concerns, no.
- 10 DR. KAUL: Dr. Rich?
- DR. RICH: Agree, yes and no.
- DR. KAUL: Dr. Black?
- DR. BLACK: I agree. I think it clearly can
- 14 be done, and I think it's something we're going to
- 15 have to do if we're going to improve our therapy any.
- DR. KAUL: Dr. Halperin?
- DR. HALPERIN: I agree.
- DR. KAUL: Dr. Krantz?
- DR. KRANTZ: I totally agree. I think the
- 20 only thing I would point out as we know from the
- 21 critical care literature in heart failure that we
- 22 actually increase mortality and complications when we

- 1 use Swan-Ganz catheters. So I think, again, not a
- 2 relative comparison, but I would make a plea that
- 3 could we try to do more echocardiographic studies
- 4 along with it, because although you won't necessarily
- 5 have agreement, you have good correlation and perhaps
- 6 we can refine the way we track these patients in the
- 7 future.
- B DR. KAUL: Dr. Halperin?
- 9 DR. HALPERIN: I think it's important,
- 10 though, to distinguish the in-dwelling Swan-Ganz
- 11 catheter from the single measurement in an out right
- 12 heart catheterization, which is associated even in
- 13 patients with pulmonary hypertension with
- 14 substantially lower risk.
- DR. KAUL: I concur. If you look at the
- 16 anesthesia literature, the Swan-Ganz catheterization
- 17 complications rates are the lowest, and they have the
- 18 best data out there compared to the ICU data, where
- 19 you have the Swan-Ganz catheter for a longer period of
- 20 time. So I completely concur.
- 21 So my answers to the Question 4, is it
- 22 technically feasible, yes; are there any ethical

- 1 concerns, no.
- We have two more questions or, actually,
- 3 three more questions. Two of them are voting
- 4 questions. We can take the break right now for 15
- 5 minutes, or we can continue. I'll leave it up to the
- 6 committee. What would you like? Take a break for
- 7 about 15 minutes? Take a break? Yes?
- DR. ROSENTHAL: I say we forge ahead.
- 9 DR. KAUL: Okay. Great. Is that okay?
- 10 Before I read question number 5, I am
- 11 required to give instructions for the voting
- 12 questions. We will be using the electronic voting
- 13 system for this meeting. Each of you have three
- 14 voting buttons on your microphone: yes, no, abstain.
- 15 Once we begin the vote, please press the button that
- 16 corresponds to your vote. After everyone has
- 17 completed their vote, the vote will be locked in.
- 18 The vote will then be displayed on the
- 19 screen. I will read the vote from the screen into the
- 20 record. Next, we'll go around the room and each
- 21 individual who voted will state their name and vote
- 22 into the record, as well as the reason why they voted

- 1 as they did.
- 2 So the question is: Does the committee
- 3 agree that for a product with an approved indication
- 4 in adults with PAH, a treatment effect on PVRI can be
- 5 used to demonstrate effectiveness and to derive dosing
- 6 information in the pediatric PAH population?
- 7 DR. VENITZ: Product, does it mean any
- 8 product or vasodilator?
- 9 DR. KAUL: Dr. Stockbridge?
- 10 DR. STOCKBRIDGE: I think you have to be
- 11 thinking about this being a vasodilator. You can
- 12 easily imagine that there are therapies that have
- 13 nothing at all to do with this as a mechanism of
- 14 action. It really wouldn't make any sense to talk
- 15 about that.
- DR. KAUL: Another clarifying question,
- 17 Dr. Newman?
- 18 DR. NEWMAN: Is this the nonexercising
- 19 pediatric population 7 years and younger or is it all
- 20 pediatrics? It doesn't specify. Is this just in the
- 21 kids that can't exercise?
- DR. KAUL: My understanding is that's the

- 1 intent. Is that correct, Dr. Stockbridge?
- DR. STOCKBRIDGE: You could certainly say
- 3 I'm voting a certain way in a certain patient
- 4 population when you get a chance to clarify your vote.
- 5 DR. KAUL: Does that help, Dr. Newman?
- 6 DR. NEWMAN: I guess so.
- 7 DR. KAUL: Any further clarifying questions?
- 8 DR. TEMPLE: I would think this should be
- 9 taken as any population. You can restrict it
- 10 afterward, but there have been all these reservations
- 11 stated about what the data show. Do those mean that
- 12 you just can't use it, or is there some population to
- 13 be described in further things in which you think you
- 14 could? I just want to be sure Norm agrees.
- DR. STOCKBRIDGE: Yes.
- DR. KAUL: And can you define the age range
- 17 we're talking about here?
- 18 DR. TEMPLE: Other people do that better.
- 19 It's below the age they can exercise. That's why
- 20 we're doing this, because you can't get the exercise
- 21 test.
- DR. KAUL: And what is that age, for

- 1 clarification?
- DR. TEMPLE: Well, it includes 2, but I
- 3 don't know how it goes. People with experience know
- 4 the answer better than I do.
- DR. ROSENTHAL: Well, in the data that was
- 6 shown, 7 seemed to be the magic number.
- 7 DR. KAUL: Seven, okay. So 7 it is.
- Put in your vote three times when the
- 9 buttons are flashing.
- 10 [Voting.]
- DR. KAUL: I'll read the results of the
- 12 voting into the record. Seven yeas, six nays, zero
- 13 abstentions. I will start off with Dr. Venitz.
- 14 Please identify yourself and how you voted and the
- 15 reason for the way you voted.
- DR. VENITZ: I'm Jurgen Venitz, and I voted
- 17 yes. I think despite some of the limitations that
- 18 were brought up throughout the day, I think this is a,
- 19 whatever you want to call it, surrogate market,
- 20 substitute marker that allows you to draw upon adult
- 21 information and extrapolate it to pediatrics.
- 22 DR. NEWMAN: This is John Newman. I voted

- 1 yes. I believe the association is strong enough to
- 2 extend the data to children that cannot otherwise be
- 3 tested for drug efficacy. I would strongly state,
- 4 though, that this should be limited to that group and
- 5 that not just any PVRI can be correlated with effect.
- 6 So caveats, but my answer was yes.
- 7 DR. KAUL: Dr. Halperin?
- 8 DR. HALPERIN: Jon Halperin. I voted yes
- 9 for just the reasons stated. Despite the
- 10 imperfections and inadequacies at the extremes of
- 11 exercise capacity, for those who are unable to
- 12 exercise in the young pediatric age group, there is no
- 13 alternative and we need some objective measure.
- DR. BLACK: This is Henry Black. I voted
- 15 no. I just wasn't persuaded that it was, in fact, a
- 16 reliable and useful test and potentially dangerous if
- 17 we do it too often.
- 18 DR. RICH: Stuart Rich. I voted no, not
- 19 because I'm not in favor. I actually am in favor of
- 20 it, but my bigger concern is it would give legitimacy
- 21 to a six-minute walk endpoint which we feel is highly
- 22 problematic and a hemodynamic assessment which could

- 1 be improved upon. And my plea is to look at time to
- 2 clinical worsening and a combination of right atrial
- 3 pressure PVRI, and that would be the way to go.
- 4 DR. NEATON: This is Jim Neaton. I voted
- 5 no, because I believe we need more work on the
- 6 validation of the proposed hemodynamic endpoint. I'm
- 7 very kind of cognizant of the problem and agree it
- 8 would be very nice to have an endpoint, a single
- 9 endpoint, that would be ascertainable in everybody.
- 10 So I think the work should be high priority. But I
- 11 think somehow in the interim, a worsening of disease,
- 12 even in younger kids, work on that should proceed.
- DR. KAUL: Sanjay Kaul. I voted no for the
- 14 reasons that have already been elucidated, not that
- 15 the -- I think the model that is being developed is, I
- 16 think, the right model. I think the information that
- 17 we have is rather incomplete. I think the model needs
- 18 to be characterized further, and if it is able to
- 19 answer some of the concerns that were raised by some
- 20 of the expert statisticians on the committee, I can be
- 21 persuaded to answer my question yes. But that's
- 22 something that can be doable even after these

- 1 deliberations.
- DR. KRANTZ: Mori Krantz. I voted yes. I
- 3 think what's going to be more interesting from this
- 4 whole discussion will be how we come up with feasible
- 5 endpoints and approaches in the future. But I think
- 6 for me, there was a lot of biological and
- 7 methodological limitations. But I think that the big
- 8 context is that this is not an orphan disease, yet a
- 9 disease where we really need to sort of expand access.
- 10 So I thought it was a very innovative analysis and
- 11 useful.
- 12 DR. COUKELL: Allan Coukell. I voted no. I
- 13 don't think we quite know what PVR means in kids. It
- 14 correlates with the six-minute walk test in adults,
- 15 but we're told that the walk test doesn't mean much in
- 16 kids. And so some of the key data is around the
- 17 correlation of VO2 peak and PVRI in a single study in
- 18 a relatively small number of kids, and listening to
- 19 the statisticians, I'm not clear that that's quite
- 20 been nailed yet. But it seems to me possible that if
- 21 that were built out further, PVRI would be more
- 22 convincing in the pediatric population.

```
1 You might then think well, this is a
```

- 2 pediatric population, so I take more comfort that the
- 3 disease is the same as younger kids and might then
- 4 look at extending it to the population. And the last
- 5 thing I would say is I'm still not completely
- 6 convinced that enough effort has been made to develop
- 7 a physical performance measure in kids.
- 8 DR. D'AGOSTINO: Ralph D'Agostino. I voted
- 9 no. My comments earlier this afternoon in terms of
- 10 the incompleteness or my view that the model was
- 11 incomplete, I think, have to be addressed. I agree
- 12 with Dr. Neaton that they should be done right away,
- 13 because you're very much close to probably having the
- 14 right model. I do, even after that, though, still not
- 15 have a very -- I'm still not comforted by what this
- 16 would be in terms of children. You may find the model
- 17 holds in the adults. There's still a question in my
- 18 mind about does it then have a validity in children.
- 19 DR. MCGUIRE: Darren McGuire. I voted yes.
- 20 I do agree completely that continued work to refine
- 21 this model needs to be done. And specifically, as Dr.
- 22 Rich pointed out, I'd like to see, although the power

- 1 may be limited as similar associations with clinical
- 2 endpoints, time to clinical worsening is probably the
- 3 most legitimate one.
- 4 I think given the precedent in pediatrics
- 5 for the extensions of previous drugs and drug classes,
- 6 I think the level of rigor required for the endpoint
- 7 is much less in this situation than given the backdrop
- 8 of safety and efficacy in adults, I am accepting a
- 9 less rigorous endpoint for pediatrics and support it
- 10 in that context.
- I think it should be considered to be at
- 12 least class, if not drug, dependent. And I'm a little
- 13 concerned that applying a one-size-fits-all to this
- 14 disease state may not be the best way to go for these
- 15 medications.
- Then finally, I think this probably should
- 17 be the primary endpoint for those both developmentally
- 18 able and not able, with secondary endpoints buttressed
- 19 by developmentally able exercise data. But limiting
- 20 this to patient populations less than 7 means you'd
- 21 have to do trials limited to the patients less than 7.
- 22 And if it's difficult to get 250 patients overall,

- 1 it's going to be impossible to get meaningful sized
- 2 trials with less than 7 years old populations.
- 3 DR. KAWUT: Steve Kawut. I voted yes. I
- 4 agree very much with what Dr. McGuire said. Based on
- 5 extensive epidemiologic, as well as the clinical trial
- 6 data that we've been shown, I think this is going to
- 7 be a good surrogate endpoint. And while probably not
- 8 ready for prime time in adults, certainly for
- 9 children, where we have maybe a lower threshold for
- 10 approval, that it's probably a useful way to approve
- 11 drugs effective in adults in children not using these
- 12 measures.
- I think as part of this approval process,
- 14 companies should be required to do follow-up studies
- of drugs approved in this manner to make sure there's
- 16 no rare or unexpected side effects.
- 17 DR. ROSENTHAL: Geoff Rosenthal. I voted
- 18 yes, but I have a couple of -- I'm reflecting on
- 19 what's been said around the table. And regarding the
- 20 lower threshold for approval in kids, I'd just like to
- 21 say that that's not a principle that we routinely
- 22 adhere to in pediatrics. The goal would be to use

```
1 criteria that are equally rigorous.
```

- I voted yes. I think PVRI is not perfect.
- 3 I think it may end up being a better endpoint to study
- 4 than the six-minute walk test.
- 5 I agree with the comments that have been
- 6 said regarding the study design to include people not
- 7 just who are unable to exercise, but those who could,
- 8 and then using exercise as a secondary endpoint.
- 9 I also agree very strongly with the comments
- 10 that have been made regarding the development of
- 11 perhaps more useful endpoints and, certainly, the
- 12 endpoint of time to clinical worsening is an important
- 13 one. But I think there may be some others that are
- 14 worth exploring, too. And I haven't thought that
- 15 through. It's just my general sense from thinking
- 16 about the clinical information that a lot goes into
- 17 PVRI, into some of these other hemodynamic assessment
- 18 and that it may be that there are more fundamental
- 19 measures rather than these complex parameters that
- 20 would be more useful.
- 21 DR. KAUL: Thank you.
- 22 Dr. Temple?

```
1 DR. TEMPLE: Well, I'm interested in the
```

- 2 queries about whether we should be looking at a whole
- 3 new class of endpoints. Remember, as a general
- 4 matter, you're not going to see any studies in little
- 5 kids until the drug is already approved for adults.
- 6 So we're talking about a study in which you do a time
- 7 to clinical worsening in what is presumably a
- 8 placebo-controlled trial in children, where some of
- 9 them are denied for a long period of time an active
- 10 therapy.
- 11 You've got to think about it. I doubt
- 12 anybody is going to do those trials. We can't do
- 13 hypertension trials more than a week in kids, because
- 14 their blood pressure would be over 130.
- This needs more discussion perhaps at
- 16 another meeting. I just don't see how anybody is
- 17 going to do it.
- DR. KAUL: What about applying those
- 19 endpoints for the adult trials and extrapolating? I
- 20 would be a lot more comfortable extrapolating if I had
- 21 a clinically relevant endpoint in the adults.
- DR. TEMPLE: I think you could do it for new

- 1 class of drugs. But, for example, right now, is
- 2 anybody going to let you leave an adult off one of
- 3 those known effective drugs until they die? It's very
- 4 unlikely. It's very hard to get those.
- 5 DR. KAUL: Death is not the only component
- 6 of that.
- DR. TEMPLE: Worsen materially, other people
- 8 have looked at it. It's very hard to do those studies
- 9 when there's a known effective drug that's a member of
- 10 the same class, and all of these are members of the
- 11 same class. But for a novel compound, yes, I think
- 12 you could.
- DR. KAUL: Dr. Rich?
- DR. RICH: Well, Bob, I really disagree with
- 15 that, because right now, no one is doing a placebo
- 16 trial. Everyone is on approved therapy. It's just an
- 17 add-on to that, so you're not leaving them high and
- 18 dry, number one. Number two, no drug has yet to show
- 19 survival advantage. So you can't make the claim that
- 20 if you randomize them to conventional therapy, they're
- 21 going to die, because you can't show that anything
- 22 makes them live longer anyway.

```
1 If you select your time to clinical
```

- 2 worsening endpoints as realistic things,
- 3 hospitalizations and need to add therapy, et cetera, I
- 4 think it's very doable. I think all of this clinical
- 5 trial data to go on. You have that data of time to
- 6 clinical worsening after the 16-week data, which shows
- 7 you those endpoints are reachable if you design your
- 8 trial right.
- 9 DR. TEMPLE: You can do an add-on study for
- 10 a new class. I think that's perfectly true. That's
- 11 correct. And you can do the study you're talking
- 12 about. But for a new Sentan (ph), where you're going
- 13 to compare this drug with placebo and they don't get
- 14 to use one of the marketed Sentans --
- DR. RICH: Do we need a new Sentan?
- DR. TEMPLE: Not particularly, but that's a
- 17 different question. I'm just trying to figure out who
- 18 you're going to do this study that we all would sort
- 19 of like to see in, and I'm finding it hard to think
- 20 where anybody is going to let you do it.
- DR. KAUL: Thank you. There are two further
- 22 questions which partially address what you're asking

- 1 for, and I think some of the people who voted no have
- 2 already given you what they would require. I would
- 3 just add one more, what further validation would one
- 4 need for PVRI. I would like to see some concordant
- 5 data.
- It doesn't matter whether we develop that in
- 7 adults, which is probably the only population we are
- 8 going to be able to develop that concordance data
- 9 between six-minute walk distance and VO2 peak. And if
- 10 that is reasonably concordant, then I don't have any
- 11 problem accepting the VO2 peak and PVRI relationship
- 12 in the pediatric population.
- 13 Anybody else have any further comments?
- Okay. We'll quickly go through -- and this
- is for those who voted yes, but others are free to
- 16 chime in, as well.
- 17 If you voted yes, would one need one study
- 18 or two? Can you please clarify what is being asked
- 19 here, Dr. Stockbridge?
- DR. STOCKBRIDGE: Well, the question is how
- 21 compelling the proof of an effect on PVRI would need
- 22 to be.

- DR. KAUL: So if you have one study with a
- 2 robust p-value, is that what you're asking, versus two
- 3 concurrent studies, each with a not so robust p-value?
- 4 DR. STOCKBRIDGE: No. I think the way to
- 5 frame this is in terms of trials powered for
- 6 conventional p-value, would you need one of those or
- 7 two of those? A substitute for two of those might be
- 8 a single study with a much lower p-value, but are we
- 9 looking at a one-trial away or a two-trial away kind
- 10 of scenario? That's the question.
- DR. KAUL: Under the assumption that the
- 12 PVRI captures a clinically relevant or utile endpoint,
- 13 that's the clarifying.
- DR. STOCKBRIDGE: That's correct. So if you
- 15 got here, that's what you thought.
- DR. TEMPLE: This is a general discussion we
- 17 have on how much evidence do you need. We have a
- 18 whole guidance on when one study will do, and it's
- 19 built on studies on other populations. That might
- 20 mean one study is good enough. A really, really
- 21 strong study, a pharmacology that goes along, although
- 22 in this case the whole endpoint is pharmacology so

- 1 that's not really relevant.
- 2 Typically, in pediatrics we do expect that a
- 3 single study in the pediatric population will do, but
- 4 for what it's worth, in depression where studies have
- 5 failed repeatedly to show anything in children, we're
- 6 asking for two. So there's a judgment in it.
- 7 DR. KAUL: Okay. Well, why don't we start
- 8 with Dr. Rosenthal?
- 9 DR. ROSENTHAL: You need to stop calling on
- 10 me when I'm not ready.
- DR. KAUL: Well, whoever is ready to answer
- 12 this. Dr. McGuire?
- DR. MCGUIRE: I'll start. I think one would
- 14 be sufficient, and it's based on the fact that it is
- 15 the fundamental premise that it is sufficiently
- 16 similar in children as it is in adults, that we can
- 17 consider the adult data at least as one trial, if not
- 18 two antecedent trials.
- DR. KAUL: Dr. D'Agostino?
- DR. D'AGOSTINO: I agree with the comment.
- 21 If I understood correctly, we wouldn't go to the
- 22 pediatric population until after it was approved in

```
1 the adult population. Given that plus the need to
```

- 2 move things along, I think one trial would be
- 3 sufficient.
- 4 DR. KAUL: Dr. Coukell?
- 5 DR. COUKELL: Sorry, I didn't know I had to
- 6 weigh in on that one.
- 7 DR. KAUL: Okay. Dr. Krantz?
- B DR. KRANTZ: I would just add, I think one
- 9 study would be adequate, but again, to echo your
- 10 sentiments, Mr. Chairman, you need the other
- 11 endpoints, as well, even if it's not adequately
- 12 powered, whether it was a functional endpoint or other
- 13 hemodynamic data. I think we want a compendium of
- 14 information that we can evaluate on a individual study
- 15 basis.
- DR. KAUL: But the question that is being
- 17 asked is PVRI, so the answer is one trial.
- DR. KRANTZ: Yes, one trial.
- DR. KAUL: Okay. I concur.
- 20 Dr. Neaton?
- DR. NEATON: Agree with one.
- DR. KAUL: Dr. Black?

```
1 DR. BLACK: I have nothing to add.
```

- DR. HALPERIN: Jon Halperin, I agree as
- 3 well. One trial would be sufficient under these
- 4 circumstances.
- 5 DR. NEWMAN: One.
- 6 DR. VENITZ: Single trial is fine.
- 7 DR. KAUL: The other component of this
- 8 question is: Response to a single dose or after some
- 9 weeks of treatment. Who wants to take that first?
- 10 You're ready, Dr. Rosenthal?
- DR. ROSENTHAL: No, but I'll answer it
- 12 anyway. So after some weeks would be my answer to
- 13 that, just because of the way that the disease seems
- 14 to behave.
- DR. KAUL: Could you be a little bit more
- 16 specific, after some weeks, 12, 16, the conventional
- 17 time point that's being used or even earlier on?
- DR. ROSENTHAL: Well, yes, 12 to 16 weeks
- 19 sounds good, some period longer than a measurement
- 20 that's obtained during the same time that the baseline
- 21 data are acquired.
- DR. KAUL: Dr. Kawut?

```
1 DR. KAWUT: Agree, as long as possible.
```

- DR. MCGUIRE: Agree, a longer study and I
- 3 think we could consider this situation a before-and-
- 4 after study without a parallel group if we have a good
- 5 feel for the placebo effect of the drug given the
- 6 orphan nature of the disease and the difficulty of
- 7 identifying the patients.
- B DR. KAUL: Let me ask, does anybody here
- 9 have any concerns if the time point was chosen at six
- 10 weeks?
- DR. TEMPLE: Can I just ask the same
- 12 question I've been asking all along? If this is one
- 13 member of a class where the children would ordinarily
- 14 be treated with a member of the class, isn't there
- 15 going to be nervousness about leaving them off for six
- 16 weeks or eight weeks or 12 weeks or 16 weeks?
- DR. MCGUIRE: That gets to my point about I
- 18 think because of the clinical penetrance of the drug
- 19 use off label, it's going to be awfully difficult to
- 20 maintain patients in a blinded placebo-controlled
- 21 trial. So I think we'd have to consider alternative
- 22 study designs.

- DR. KAUL: Or early time points. Is there
- 2 any evidence to suggest that these hemodynamic
- 3 variables measured at four, six weeks are different
- 4 from what they measure at 16 or 12 weeks? In other
- 5 words, my understanding was that they're a highly
- 6 reliable predictor of what happens at 12 to 16 weeks
- 7 at four or six weeks. Is that correct, Dr. Rich?
- B DR. RICH: That's my understanding. I think
- 9 the only differences you've seen in the clinical
- 10 trials is when the dose has been escalated over time.
- 11 But once they're on the full dose, four weeks later,
- 12 you had the same effect you had 12 weeks later.
- DR. KAUL: Dr. Barst, I see you. Are you
- 14 nodding in agreement or disagreement? Could you
- 15 please come to the microphone and share your rationale
- 16 for your disagreement?
- DR. BARST: Some of our adult randomized
- 18 trials have shown that we see the dose effect not
- 19 until 12 weeks, for example, at 16 weeks. That's one
- 20 of our recent drugs that's been approved, and we have
- 21 seen that similarly with some of the prostacyclins.
- 22 So I would be uncomfortable saying that we should be

- 1 doing this at four, six weeks, because we may not
- 2 demonstrate a robust treatment effect that we could
- 3 see if we treated the child longer. So I would really
- 4 disagree with that.
- 5 DR. STOCKBRIDGE: The exercise effect takes
- 6 many weeks to manifest. I've always assumed that had
- 7 to do with after you've fixed the hemodynamic problem,
- 8 now you've got to train in order to get real exercise
- 9 response. But what evidence is there that it takes a
- 10 long time for the hemodynamic effects to fully
- 11 manifest?
- DR. BARST: Certainly, the two studies for
- 13 the approval of IV epoprostenol showed minimal acute
- 14 effects, because they were all tested, and significant
- 15 hemodynamic effects at either eight or 12 weeks.
- We did do an industry-sponsored prospective
- 17 study, which was very small, in children with Bosentan
- 18 because of concerns about safety. Even though we'd
- 19 already demonstrated safety and efficacy, we did do
- 20 acute effects for those children over 24 hours and did
- 21 not see favorable acute effects in hemodynamics.
- 22 However, when we looked at the data at 12 weeks, we

- 1 had significant hemodynamic improvement in the
- 2 treatment-naïve children, as well as add-on to
- 3 epoprostenol.
- DR. KAUL: Does that help, Dr. Stockbridge?
- 5 Assessment of PVRI at peak or trough, the general
- 6 protocol is doing it at trough. Does anybody here on
- 7 the committee disagree with that?
- 8 So that's the answer, trough.
- 9 DR. STOCKBRIDGE: Okay. Well, if you really
- 10 thought it took many, many weeks to develop
- 11 hemodynamic effects, it would be a surprise to me that
- 12 you could tell peak from trough.
- DR. KAUL: I kind of anticipated the
- 14 response. I leave it to the expert. My superficial
- 15 knowledge of the trial design and what I have seen is
- 16 that hemodynamics at early time points is quite a
- 17 reliable predictor, but I would submit to the
- 18 expertise of Dr. Barst and others here. But your
- 19 point is well taken.
- 20 Do I hear anybody else on the committee have
- 21 a differing opinion? Dr. Newman?
- DR. NEWMAN: I wasn't going to speak to peak

- 1 or trough, but I agree with Dr. Barst about the
- 2 timing. Clearly, in the old days when vasodilators
- 3 were used, many of them had acute effects and had no
- 4 durability. In fact, tachyphylaxis would occur.
- 5 Biological responses would occur that rendered them
- 6 useless. So at the early end, you can't do it. And
- 7 clearly, when even Flolan came out, there were
- 8 patients that didn't have acute responses who, over
- 9 six to 12 weeks, got massively better due to some
- 10 compensations, perhaps myocardial function, so that
- 11 their exercise capacity and their hemodynamics
- 12 improved.
- So I think it would be wrong to assume that
- 14 we're just looking at a pharmacologic effect on a
- 15 frog's leg. We're looking at an integrated response,
- 16 full human response, which we don't understand. And
- 17 so I think probably eight to 12 weeks would be the
- 18 minimum I think a study should go.
- 19 DR. KAUL: Is it a fair statement to make
- 20 that there is a lag between the hemodynamic
- 21 improvement and the measure of exercise capacity and
- 22 that hemodynamic improvement precedes the improvement

- 1 in exercise capacity, Dr. Barst?
- DR. BARST: All we know is that limited data
- 3 where we did acute testing with the drugs, whether it
- 4 was Bosentan or epoprostenol or sildenafil, that we
- 5 saw far less of an effect, if any effect, acutely
- 6 compared to what we saw chronically.
- 7 One of the difficulties is that we feel,
- 8 based on risk-benefit assessment, we shouldn't do
- 9 serial cardiac catheterizations at four, eight, 12 and
- 10 16 weeks, even though in some of the studies we do
- 11 demonstrate the beginning of improvement exercise
- 12 prior to the end of the study. We've used our
- 13 experience to come up with what we think is the best
- 14 time to assess when we would expect to see a
- 15 hemodynamic improvement, if we were going to be able
- 16 to demonstrate one.
- DR. KAUL: So the answer is -- you're
- 18 hearing quite a spread here from four weeks up to 16
- 19 weeks, and I think you'll have to reconcile what is
- 20 required to be captured with the real-world
- 21 pragmatism. Can we really keep these patients of
- 22 these medications for whatever time that you can

1 decide? I think that should really weigh in into this

- 2 question.
- 3 Yes, Dr. Black?
- 4 DR. BLACK: Just a point of clarification
- 5 for me.
- 6 Can you give the same answer for every drug
- 7 in every drug class? It sounds like that's a big
- 8 leap, and maybe you may have to have a different
- 9 answer for each drug in each class in each dose even.
- DR. KAUL: I think Dr. Newman's -- that was
- 11 going to be my response, that what you told me had
- 12 more to do with the nature of the drugs that were
- 13 being given in the '70s and '80s, where you couldn't
- 14 really reliably predict, at least in part.
- DR. NEWMAN: We don't know.
- DR. KAUL: The tachyphylaxis and all that
- 17 stuff. Dr. Rich?
- 18 DR. RICH: There is a big difference between
- 19 intravenous prostacyclins and the oral agents. The
- 20 acute side effects of the IV prostacyclin prevent us
- 21 from giving what we call a therapeutic dose, unless we
- 22 do it gently over many periods of time, whereas

- 1 sildenafil, you can give the full dose at day 1. And
- 2 so that's a big issue here, and it's really a side
- 3 effect profile that we waited to abate before we up-
- 4 titrated the dose.
- 5 Once you get to whatever your target dose is
- 6 -- and maybe we all practice a little differently --
- 7 once you get there, your hemodynamics should reflect
- 8 it. I don't know of any hidden mechanism that
- 9 undergoes the pulmonary circulation or the right
- 10 ventricle that has a lag phase to it. 'm not saying
- it can't be, but we certainly don't know about that.
- DR. KAUL: Okay. Would one also need
- 13 exercise as a secondary endpoint in older children
- 14 able to perform the test? And by of clarification,
- 15 the age cutoff here is over 7; is that correct? Okay.
- 16 Dr. Kawut?
- 17 DR. KAWUT: It would be nice to have
- 18 functional status in exercise as a supportive
- 19 endpoint, as well as a patient- or parent-reported
- 20 outcome. And I know there's some work going on in
- 21 that in children, but that would be nice as something
- 22 to support hemodynamic changes and to also kind of

```
1 relate it to the effects seen in adults.
```

- DR. KAUL: Dr. McGuire?
- 3 DR. MCGUIRE: As I said in the justification
- 4 for my vote, I think that would be an important
- 5 buttressing. I don't know that an age cutoff is so
- 6 appropriate as a developmental ability, as we know
- 7 that age over 7 Down syndrome kids, for example, can't
- 8 effectively do this walk testing.
- 9 DR. KAUL: Dr. Coukell, I think you made a
- 10 compelling argument for having other performance
- 11 measures.
- DR. COUKELL: Right, so I vote yes.
- DR. KAUL: Dr. Krantz?
- DR. KRANTZ: Yes.
- DR. KAUL: Dr. Venitz?
- DR. VENITZ: I was going to say that was
- 17 part of my yes vote overall was to actually do the
- 18 exercise test.
- DR. KAUL: Dr. Newman?
- DR. NEWMAN: Yes.
- DR. KAUL: Anybody with a no? Okay.
- The final component of this question: Does

- 1 the PVRI exercise relationship for the adult data
- 2 offer a way to set the size of the required study? In
- 3 particular, if one wanted to resolve an effect
- 4 corresponding to a 10 percent exercise improvement in
- 5 adults, can one define the corresponding change in
- 6 PVRI? And I will add, in pediatric population.
- 7 Dr. Neaton, clarifying question or --
- DR. NEATON: Can I ask? The way I'm
- 9 interpreting this is that you'd like some guidance.
- 10 You not only want to beat placebo, say, on PVRI, you
- 11 want to beat it by a certain amount.
- DR. STOCKBRIDGE: No. It's good to clarify
- 13 that. Although it's possible you could have looked at
- 14 these data and said you shouldn't really even think
- about doing this, the relationship's not reliable
- 16 until you get to a certain --
- DR. NEATON: That was my original thought.
- DR. STOCKBRIDGE: And that's fine. But this
- 19 gets at a different issue, which is trying to ensure
- 20 that the variance that is achieved in the trial, which
- 21 is purely a function of sample size, is small enough
- 22 that had the true effect been zero, you would have

- 1 reliably excluded a minimally interesting treatment
- 2 effect.
- 3 So it has to be somewhat independent of what
- 4 the apparent effect is. That can't figure into here,
- 5 because let's say if somebody had a drug where the
- 6 nominal effect, the true effect of the drug was
- 7 80 percent of the minimally interesting effect, they'd
- 8 never be able to exclude a minimally interesting
- 9 effect, no matter how many people they put in the
- 10 trail.
- 11 This is all about trying to get the
- 12 variability observed in the trial lower enough so that
- 13 if it fails, you can say I'm pretty sure the drug's
- 14 not useful.
- DR. TEMPLE: This goes to one of the
- 16 problems associated with BPCA, which is you don't have
- 17 to win. You just have to do. And we want to be sure
- 18 the trial has a reasonable shot at showing what would
- 19 be considered a meaningful effect. So in blood
- 20 pressure, we ask people to have enough power to rule
- 21 out, I don't know, 3 millimeter mercury or something
- 22 like that. We also ask for people to recalculate the

- 1 variance toward the end to see if they've undermined
- 2 their power calculation. And that's really what this
- 3 is. How big should it be? What size effect should
- 4 you power it to show? And then we would probably also
- 5 ask people to recheck the variance late to see if they
- 6 should upsize.
- 7 DR. KAUL: If we accept a 10 percent
- 8 exercise improvement in adults to be an indicator of a
- 9 minimal clinically important benefit in adults, I
- 10 don't have a major problem in extrapolating the six-
- 11 minute walk data to the VO2 peak. I think it's likely
- 12 going to be concordant, but I would be less uncertain
- or, should I say, more confident if there was any
- 14 data, body of data, to provide support for that
- 15 assumption. And then you can draw upon that and say,
- 16 yes, a 10 percent improvement in VO2 peak is the bar
- 17 that we should be powering the study for. So I think
- 18 that those are interrelated.
- So anybody else have a -- Dr. D'Agostino?
- 20 DR. D'AGOSTINO: If you give that they want
- 21 and do a 10 percent exercise improvement, the
- 22 mathematics that was displayed this morning is, I

- 1 think, appropriate for ultimately sizing the study.
- 2 So the question we have, again, is that the model that
- 3 we've seen we're uncomfortable with it, but
- 4 technically or theoretically, that mathematical
- 5 procedure should work.
- 6 You have the variability in the study that
- 7 you're going to look at. You also have the
- 8 variability in the model. So you do have an added
- 9 problem in terms of how well you can use the model and
- 10 how well you're going to get the results. But I think
- 11 theoretically, the model could be used to do what you
- 12 were asking.
- DR. KAUL: Dr. Venitz?
- DR. VENITZ: I agree the answer to the
- 15 question that you raise is yes, but in addition to
- 16 this linear scale that I think we've been talking
- 17 about, part of I think my discomfort with question
- 18 number 1, accepting the model as is, had to do with
- 19 maybe trying to use a binary classification on the
- 20 data that Dr. Brar shared with us. And I think it
- 21 goes back to one of the questions you raised, where
- 22 you want to know can you win either way and how many

- 1 times do you win both ways and is there concordance
- 2 and discordance.
- I think part of the cross-validation
- 4 exercise might be to try to look at different changes
- 5 in percentages or whatever units you want to use on
- 6 your pulmonary vascular resistance and see how many of
- 7 those studies then would end up winning on the
- 8 clinical endpoint of interest.
- 9 So you could actually use that as a way of
- 10 coming up with a number that would be clinically
- 11 meaningful if you're willing to accept that there is
- 12 an extrapolation to pediatrics.
- DR. KAUL: Dr. Rich? Oh, I'm sorry.
- 14 Dr. Kawut?
- DR. KAWUT: I would say no, just because we
- 16 really don't know what the minimally clinically
- 17 important difference in six-minute walk is and
- 18 especially as -- much less peak VO2. And as we go
- into more studies where it's going to be add-on
- 20 treatment, so we're doing placebo-control trials in
- 21 people who are already treated, these effect estimates
- 22 are going to be much smaller, as they have been

- 1 already in adults. And so to try to size your study
- 2 based on an estimate that we don't have, I think, is
- 3 fraught with problems.
- DR. STOCKBRIDGE: Okay. But I still have to
- 5 tell somebody how big a trial I want them to do. So
- 6 what's your solution to this problem?
- 7 DR. KAWUT: I quess I would look at the
- 8 effect of the drug in its previous adult studies, look
- 9 at the effect estimate in terms of pulmonary vascular
- 10 resistance there and knowing your variability in your
- 11 kids, try to hit that difference that you saw in your
- 12 adult studies.
- DR. KAUL: Dr. Stockbridge, you're reluctant
- 14 to accept that answer.
- DR. STOCKBRIDGE: Well, having a big effect
- 16 is not a problem. And in fact, developers, sponsors
- 17 frequently ignore our requirements for sizing a trial
- 18 in pediatrics and rely upon the fact that if they
- 19 ignore us and win big, we'll amend the written request
- 20 to say we thought you were going to need 80 subjects
- 21 per group, you won with 20, so the trial was
- 22 successful.

```
1 That's not the problem here. The problem is
```

- 2 trying to make sure that if they run the trial with 20
- 3 and say didn't work out, they should still get paid.
- DR. KAWUT: That's a bigger question than
- 5 what's written down.
- DR. KAUL: Dr. Gobburu?
- 7 DR. GOBBURU: We are here to seek your
- 8 opinion, but something has flashed based on the
- 9 discussion that's going on, so I'll just share it for
- 10 your consideration. I think what we're asking is a
- 11 way to design the pediatric trials using the
- 12 hemodynamic endpoint to minimize false negatives.
- 13 That's what we're asking.
- So there are two ways to do it. One is as
- 15 the gentleman before alluded to. The other could be
- 16 we can take the previously approved database of drugs,
- 17 and we could come up with the lowest double delta PVRI
- 18 that we have put on the market and say we can work off
- 19 that. Just something for you to consider.
- DR. KAUL: Dr. Newman?
- 21 DR. NEWMAN: There is no easy answer. It's
- 22 slide 56 from this morning that shows delta delta PVRI

- 1 versus the delta delta exercise, with the mean and the
- 2 range, that suggested that 20 percent reduction of PVR
- 3 was highly associated with a significant increase in
- 4 six-minute walk.
- 5 Obviously, you can't just take a statistical
- 6 difference in PVR going from baseline to some change
- 7 and call that a real effect. You're not going to be
- 8 able to do that. You're going to have to take some
- 9 threshold delta PVR that you feel associates reliably,
- 10 if you could exercise the patient, to an exercise
- 11 effect and pick it.
- I think that you're always going to have the
- 13 problem of having false negatives. You may miss a few
- 14 patients that those little changes in PVR might
- 15 actually benefit them, but you got to make a cut
- 16 somewhere. We know that at the flat part of the line,
- 17 that you can get big changes in PVR, negative changes,
- 18 with no effect on six-minute walk, which is the
- 19 current gold standard, even though it's fool's gold.
- 20 So I think you're going to have to use your own data
- 21 to power the study to figure out what statistical
- 22 significance is. I mean, am I missing something? Did

- 1 I not get it?
- DR. KAUL: Is that what, Dr. Temple, you
- 3 were trying to use 400 or 500 PVRI as your cutoff and
- 4 see?
- 5 DR. TEMPLE: Yes. That could help you
- 6 decide what the minimum effect size is. You have to
- 7 design to show effectiveness, but we have to look more
- 8 closely at that.
- 9 DR. NEWMAN: Can you go to slide 56?
- DR. KAUL: Slide 56 off the sponsor, I
- 11 believe?
- DR. NEWMAN: Yes, the sponsor.
- DR. KAUL: Yes. Dr. Newman, did you have
- 14 any comment?
- DR. NEWMAN: Yes. I just wanted to be able
- 16 to see that. That's the way I think about it, right
- or wrong.
- 18 DR. TEMPLE: That would be to say size the
- 19 trial to show an effect size of at least X, which
- 20 corresponds to what you think is a reasonably likely
- 21 chance to have been able to show a difference in PVRI
- 22 that corresponded to an observable, detectable

- 1 difference in exercise.
- DR. KAUL: So the obesity drug development
- 3 program has one of those weight thresholds. You'd be
- 4 required to have a 10 percent or whatever the number
- 5 is, but you also have to have a minimum difference,
- 6 which is probably viewed as clinically important. Is
- 7 that what you're trying to ask the committee? Not
- 8 only do you have to cross the threshold, but you also
- 9 have to have a minimum change that is within that
- 10 bound.
- Dr. Gobburu, did you have a comment?
- DR. GOBBURU: No. I don't think that we are
- 13 asking that. What we're asking is that -- for
- 14 example, the sponsor might come in and say that my
- 15 best guess of the double delta PVRI is minus 60 on
- 16 this plot, and they can say I only need 10 patients to
- 17 do that. And then you do the trial, and then that's
- 18 not what you observed. So what we're asking is what
- 19 would be a reasonable target double delta to, say,
- 20 exclude from the confidence interval to interpret the
- 21 trial as not false negative.
- 22 So if we agree, let's say, on the plot --

- 1 just throwing numbers -- minus 20 is a meaningful
- 2 change in PVRI, we would say that you have to power
- 3 the study to exclude minus 20 from the double delta
- 4 confidence interval.
- 5 DR. TEMPLE: But the reason is different
- 6 from the weight loss. The weight loss, that's about
- 7 what's clinically meaningful. Here, it's what kind of
- 8 difference in double delta PVRI is big enough to
- 9 believe that it would correspond to a documentable
- 10 change in exercise.
- DR. STOCKBRIDGE: Except for the fact that
- 12 the current written request has a 10 meter or 10
- 13 percent or something change in exercise as a minimally
- 14 important difference. So there really was something
- 15 to it. The goal wasn't to ensure the drug would beat
- 16 placebo.
- 17 DR. TEMPLE: You could do that, too, but I'm
- 18 going to the kinds of questions Ralph and Jim were
- 19 raising before. There were all these ones down on the
- 20 right side of the curve that didn't really show
- 21 anything. So maybe there's a minimum effect on double
- 22 delta PVRI given the drawing we had there that would

- 1 provide reasonable assurance to you that this would
- 2 have corresponded to an actual effect on exercise.
- 3 I'm not necessarily saying it has to be an
- 4 effect of a certain validity or value, just that it
- 5 would be detectable, that it would be real, that it
- 6 really would have been there. So it's slightly
- 7 different reasoning, although obviously not unrelated.
- 8 DR. KAUL: Dr. McGuire?
- 9 DR. MCGUIRE: If this is all I'd seen, I'd
- 10 think this looks beautiful, but that color-coded delta
- 11 delta by class really doesn't affect -- I mean, I'll
- 12 go back to my comments, and people are hinting around
- 13 this. I think this is going to be class dependent, if
- 14 not drug dependent, and I think we're going to be
- 15 basing this registration design on existing adult
- 16 data. And I think you take the drug that you're going
- 17 to test and analyze the data and plot out what delta
- 18 PVRI corresponds to the six-minute walk test.
- 19 The six-minute walk test is not perfect, but
- 20 that's the whole premise of our assumption that this
- 21 will apply to pediatrics. And so I think that's the
- 22 best way to do it.

```
DR. KAUL: Dr. D'Agostino?
```

- 2 DR. D'AGOSTINO: I'm saying the same. If
- 3 you try to go back to the company's data, they may not
- 4 have it. So you have to go to somehow or other this
- 5 collection of data, the best you can come up with.
- 6 And in terms of individual classes and what have you,
- 7 if you really think that's going to be a problem,
- 8 you'd have to be generating a model per class. So
- 9 you're going to have to bite the bullet somehow or
- 10 other and say I have enough data where I feel I have a
- 11 valid model. Then if you do, then the types of steps
- 12 that we would -- in terms of excluding 10 percent
- increases and so forth can, in fact, be worked out.
- DR. STOCKBRIDGE: If you really thought you
- 15 needed to do this at the individual drug level, you
- 16 didn't have any confidence in doing it by drug class,
- 17 we have the ability under the written request to
- 18 require the appropriate studies in adults that would
- 19 define the relationship that you would use to set the
- 20 margins for children. We could do that under a
- 21 written request.
- DR. KAUL: Dr. Venitz.

```
DR. VENITZ: Can we go back to Dr. Brar's
```

- 2 slide number 9? I think that's the bubble slide that
- 3 we talked about, because I think what you want us to
- 4 do is basically draw a line parallel to the Y axis
- 5 somewhere between, I don't know, minus 200 and minus
- 6 400 and anything to the left of that would be
- 7 clinically significant, anything to the right of that
- 8 would not be clinically significant. Is my
- 9 interpretation correct?
- DR. TEMPLE: You could say that, but I
- 11 didn't think of it as clinically significant. What I
- 12 meant was actually detectable.
- DR. VENITZ: Well, I'm saying you have the
- 14 data right here. What I'm proposing is that you treat
- both the X and Y axis as binary variables and then
- 16 play games and see how many times you show up.
- DR. TEMPLE: That's fine, whichever you call
- 18 it.
- DR. KAUL: Dr. Neaton?
- DR. NEATON: This is a tough one, and maybe
- 21 some of the historical data that you showed would be
- 22 helpful. But if I were doing this, I'd want to base

```
1 it on the trials that I did in the adult population
```

- 2 with the drug. You've got to have a large body of
- 3 data there with the specific drug, with the
- 4 relationships done kind of in your labs and the sites,
- 5 and that's kind of what I want to base it on.
- I guess one consideration that I think maybe
- 7 should be thought through, given the earlier
- 8 discussion, if you go this route and require in older
- 9 kids that you do the exercise testing, I might
- 10 consider some power situations around that endpoint,
- 11 as well, even though it's a secondary endpoint.
- DR. KAUL: Dr. Kawut?
- DR. KAWUT: I think your goal is worthy,
- 14 which is targeting some minimally clinically important
- 15 difference. The problem is it kind of holds this
- 16 trial up or a pediatric trial to a potentially higher
- 17 standard than an adult trial where you don't require a
- 18 minimally clinically important difference. And where
- 19 we could get a drug approved in an adult with
- 20 literally 1 meter difference in six-minute walk --
- 21 DR. STOCKBRIDGE: That's because people get
- 22 paid regardless of the outcome here, okay?

```
DR. TEMPLE: But also, that's why I'm not
```

- 2 calling it a clinically meaningful difference. One
- 3 way to read that -- I don't know if everybody is going
- 4 to read it that way -- is that if your value is below
- 5 400, you don't really know what you're going to get.
- 6 Some of them work; some of them don't work. But if
- 7 you're above 400, it looks pretty consistent. So
- 8 maybe above 400 or above minus 400, that's reliable
- 9 enough to use. I'm not sure we're convinced of that.
- 10 I sort of want to know more about those
- 11 bottom five balloons to see what's peculiar about
- 12 them. We already heard that the most impressive was an
- 13 oddity. So maybe that's a red herring. But there
- 14 still might be a cutoff before you'd say I know this
- 15 corresponds to exercise. It isn't so much how big the
- 16 exercise is. It's does it really correspond. So I
- 17 didn't think of it as a minimal effectiveness
- 18 standard.
- 19 DR. KAUL: So the disconnect between minimal
- 20 detectable difference versus minimal clinically
- 21 important difference, so what you're talking about
- 22 here is minimum detectable difference. And I think

- 1 the strategy that you just proposed seems to be quite
- 2 a reasonable strategy, unless Dr. D'Agostino and
- 3 Dr. Neaton disagree.
- DR. NEATON: I think further work on this
- 5 along those lines makes sense, but like I said, I
- 6 would definitely consider the trials that were just
- 7 recently done in the adult population that led to
- 8 approval, as well.
- 9 DR. KAUL: Okay. I think we are going to
- 10 move to our question number 6. The committee is now
- 11 asked to consider the application of PVRI in the
- 12 pediatric development program for sildenafil. The
- 13 question is: What are the implications of the
- 14 unsuccessful study targeting exercise? Are the
- 15 exercise data supportive of use in children?
- 16 Let's tackle that first. Since this is a
- 17 nonvoting question, Dr. Veltri.
- DR. VELTRI: Mr. Chairman, I just have a
- 19 point of order here. I'm putting on my hat as the
- 20 industry representative. We've seen data, but as I
- 21 understand it, the FDA hasn't reviewed it. The NDA is
- 22 in preparation. And certainly, I think the panel

- 1 members haven't had the opportunity to see in-depth
- 2 data, for instance, the long-term information.
- 3 So I just question whether, for instance,
- 4 having statements on support of use in children you
- 5 can argue it's being used off label already, but I
- 6 don't think the data has been appropriately reviewed.
- 7 So I have a concern there.
- 8 Secondly, I don't know about the precedent
- 9 of this. I understand the need for the written
- 10 request question about the amendment there, but
- 11 obviously, the data has now been unblinded. And I
- 12 think some of the questions here alluded to the fact
- of changing something post hoc, so it's just a point
- 14 of order from an industry perspective, a sponsor
- 15 perspective overall.
- DR. STOCKBRIDGE: And you've hit exactly the
- 17 right issue here. That's what we're talking about
- 18 here. I think one of my colleagues called it drawing
- 19 the bulls-eye around the arrow feel to it.
- 20 Nevertheless, the goal here was to try and get useful
- 21 information in children, and there is a trial. It's
- 22 done. It's in the can. We have not reviewed it. We

- 1 can't tell you that we agree that the exercise data
- 2 are as good as the sponsor described it. You'll have
- 3 to couch your answer with certain assumptions about
- 4 the validity of the data that they've acquired and go
- 5 from there.
- 6 DR. VELTRI: I just put it in the record
- 7 that these circumstances go beyond the usual. This is
- 8 the only randomized clinical trial in kids, a landmark
- 9 trial, perhaps. But this may not be setting the right
- 10 precedent.
- DR. KAUL: Your comments are duly noted.
- Does anybody else feel along the same way?
- 13 Dr. McGuire?
- DR. MCGUIRE: I would just like a little
- 15 historical clarification as to when this uncommon
- 16 collaboration, I think you called it, began with the
- 17 agency and companies developing drugs in this domain.
- 18 Did that begin before the unblinding and the analysis
- 19 of this pediatric trial?
- 20 DR. STOCKBRIDGE: It absolutely did. We've
- 21 been pulling these data together for the last two
- 22 years or so with this thought in mind. We knew this

- 1 was going to be an issue and have been working
- 2 steadily at this. It's taken awhile to do what we've
- 3 done.
- 4 DR. MCGUIRE: And during that time period,
- 5 that has been in collaboration with at least some of
- 6 the industry sponsors or completely --
- 7 DR. STOCKBRIDGE: No, this was nothing to do
- 8 with any sponsor, including Pfizer. We've had the
- 9 data because people have sent in study reports with
- 10 applications for our consideration.
- The recent cooperation came because we knew
- 12 that the Pfizer program was nearing an unsuccessful
- 13 completion and that happened to be about the same time
- 14 that we were putting together our analyses of the data
- 15 that we had homogenized and reviewed. So it was if
- 16 you agree on issues that question 6 raises, fortunate
- 17 timing for them. If you don't agree on things there,
- 18 then it was somewhat unfortunate timing for them. But
- 19 they've had no role whatsoever in the evolution of the
- 20 model, the selection of PVRI as a candidate. They've
- 21 had no role in that at all.
- DR. KAUL: Dr. D'Agostino?

```
1 DR. D'AGOSTINO: I'm sorry if I'm not
```

- 2 remembering or so forth. But are we talking about
- 3 replacing the primary endpoint with -- is this what
- 4 the study is going to be judged on?
- 5 DR. STOCKBRIDGE: Well, in some sense, the
- 6 answer to that is yes. They had a different primary
- 7 endpoint that was negotiated with them at the time the
- 8 study was initiated. Those data exist, as well as
- 9 data that they collected that was not part of their
- 10 primary endpoint.
- 11 You're being invited to tell us how
- 12 concerned you are that the FDA basically is
- 13 contemplating allowing a change, inviting a change in
- 14 the primary endpoint to accommodate the view that PVRI
- would have been an acceptable endpoint for them.
- DR. D'AGOSTINO: So given the discussion
- 17 we've had where a number of us are not comfortable
- 18 with the establishing of the relationship, is it
- 19 possible that we could say yes on this and no
- 20 previously? I mean, is there a logic --
- 21 DR. STOCKBRIDGE: You could certainly say I
- 22 wasn't comfortable with the establishment of the

- 1 relationship, and perhaps you have enough information
- 2 on hand to address those concerns. But if I were
- 3 ready to adopt PVRI, I would or would not have trouble
- 4 allowing the Pfizer program to declare victory here.
- 5 DR. KAUL: I think that this question number
- 6 6 has to be taken independent of the answers to the
- 7 question number 5. This question number 6 assumes
- 8 that the relationship has been established. And if it
- 9 has been established, what is our thought process with
- 10 regards to the statistical analytical plan?
- DR. PACKER: Milton Packer, I'm a consultant
- 12 to Pfizer today, being compensated for my time and
- 13 travel here. The sponsor, if I understand it,
- 14 prespecified the primary endpoint, which is exercise,
- 15 and on its primary prespecified analysis, achieved a
- 16 p-value of .056. One can spend a long time as to
- 17 whether that is consistent with a treatment effect or
- 18 not, especially given the totality of data within the
- 19 pediatric study and the positive data in the adult
- 20 study. It's a little bit hard to imagine calling the
- 21 pediatric study a clearly negative trial. It's just
- 22 not a fair characterization.

```
1 Having said that, I don't think the sponsor
```

- 2 is proposing in any way, shape or form changing the
- 3 primary endpoint. All the sponsor is asking for is
- 4 that the changes in PVRI be considered by the FDA in
- 5 the totality of the data in the pediatric study. And
- 6 that's a very different set of circumstances than are
- 7 implied in question number 6.
- B DR. KAUL: Dr. D'Agostino?
- 9 DR. D'AGOSTINO: This is where I was
- 10 heading, Milt, is that are we talking about a
- 11 supportive variable or variables whose analysis may be
- 12 supportive of the claim and so forth, and I had no
- 13 idea about the .056 or are we talking about sort of
- 14 redoing everything and saying now this is our primary.
- 15 And if I hear you correctly, now your point of view is
- 16 that this would just another variable supportive.
- 17 There's a lot of discussion that it looks like it's a
- 18 reasonable variable, but it's not replacing the --
- 19 it's not changing the whole analysis plan.
- DR. PACKER: And that's the point. All
- 21 Pfizer wants is to say PVRI should be included in the
- 22 consideration of the totality of the data. It was a

```
1 prespecified secondary endpoint included in the total
```

- 2 assessment together with the fact that there's adult
- 3 data and together with the fact that the p-value on
- 4 the prespecified analysis on exercise is .056.
- 5 DR. KAUL: For clarification,
- 6 Dr. Stockbridge, has the FDA had a chance to look at
- 7 the sponsor's data for the pediatric population?
- 8 DR. STOCKBRIDGE: Absolutely not.
- 9 DR. KAUL: Okay. And so has it been
- 10 published?
- DR. EWEN: It has been presented at ERS last
- 12 year, and it's been submitted for publication at the
- 13 moment.
- DR. KAUL: So if the FDA hasn't had a chance
- 15 to look at the data and the p-value is .056, that, in
- of itself, raises a flag for me. But the trouble I'm
- 17 having here is -- are we to sort of ignore that
- 18 completely and just answer the question that if we
- 19 assume that the relationship has been established, how
- 20 do we proceed ahead?
- 21 Dr. Temple, Dr. Stockbridge?
- DR. TEMPLE: I guess I don't think you're

- 1 really ready to answer this question fully. What
- 2 Milton is proposing is do you think that a study with
- 3 a borderline result might be moved one way or the
- 4 other by an effect on something you knew about. If you
- 5 want to offer opinions on that, feel free. We've
- 6 accepted one-sided tests once in a while when we
- 7 thought it was the right thing to do. We like to say
- 8 we're not slaves to the p-value, although, of course,
- 9 we really are.
- 10 DR. PACKER: It's not a one-sided test.
- 11 It's a two-sided test, .056.
- DR. TEMPLE: I understand. I'm giving an
- 13 illustration of flexibility.
- DR. PACKER: Okay. No problem.
- DR. TEMPLE: That's accepting .1, you know.
- DR. KAUL: But regardless of whether the
- 17 p-value is .06 or .04, the issue is that -- is the FDA
- 18 asking the committee to weigh in on the data that was
- 19 presented to us or just assume that the relationship
- 20 has been established and independent of the data, what
- 21 would we advise?
- DR. STOCKBRIDGE: I guess there are several

- 1 parts to that. One is you've got to assume that the
- 2 data are as they have described them. Upon review, we
- 3 may decide there are issues with them, but you've got
- 4 to assume that they've appropriately described their
- 5 study results.
- It is a trial that's done, so there is a
- 7 nonprospective aspect to this that the question is
- 8 inviting you to consider. I certainly had been
- 9 thinking about this in terms of thinking about PVRI as
- 10 a primary endpoint, but I don't have any deep problem
- if the committee wants to discuss the original primary
- 12 endpoint, plus I'm going to think about some other
- 13 results here. It's not the usual paradigm for making
- 14 a decision about whether or not an effect exists, but
- 15 that's okay.
- DR. KAUL: Dr. Neaton?
- DR. NEATON: I guess to me, it makes a lot
- 18 of sense what Milt Packer suggested. Whenever this is
- 19 reviewed formally, to consider the totality of the
- 20 data, that's kind of a no-brainer. Right now, we
- 21 don't have any safety data here, so we can't do that.
- 22 And your review, which is often insightful is not

- 1 here, as you mentioned, Norm.
- 2 So it just seems like it would be very easy
- 3 for me to say right now that when that review took
- 4 place, I would definitely capitalize on the work that
- 5 the FDA has initiated in interpreting the totality of
- 6 these data. Beyond that, it's a little hard.
- 7 DR. TEMPLE: That may be enough of a
- 8 response to question 6. If everybody thinks that's
- 9 reasonable, that's probably as far as you need to go.
- 10 DR. NEATON: Okay.
- DR. KAUL: You mean all the other
- 12 components, too?
- DR. TEMPLE: With what Jim said, yes.
- DR. KAUL: Okay.
- DR. TEMPLE: Because you don't have enough
- 16 data to go much further.
- DR. KAUL: Dr. McGuire?
- DR. MCGUIRE: Can I ask another
- 19 clarification, because it's two quite disparate
- things, in my head, that we may be discussing here?
- 21 One, the matter is, is there some way that we can take
- 22 this trial that's done and analyze it and make it

- 1 somehow positive and, therefore, have something in the
- 2 product label at some point that says it's okay to use
- 3 in kids, or are we talking about has this trial
- 4 satisfied the written request?
- 5 If the answer to the second part is no,
- 6 that's a huge deal. If the second part, the trial is
- 7 done and whatever it showed, they've satisfied the
- 8 written request so they can get the six-month
- 9 exclusivity and all we're dickering about here is
- 10 whether or not it'll have a line or two in the product
- 11 label for kids, those are two completely different
- 12 issues.
- So I just need to understand. Are we
- 14 talking about how we're going to interpret the data
- 15 from the trial or whether or not we've satisfied the
- 16 written request requirement?
- 17 DR. STOCKBRIDGE: The intent of the written
- 18 request is to reward companies for providing data that
- 19 are useful in labeling. The development program -- I
- 20 think it's fair to say, the development program --
- 21 unless we revise the written request, according to the
- 22 current written request, the sponsor's development

- 1 program does not meet its terms.
- 2 It's entirely possible to -- it's
- 3 conceivable to leave it in that state and reach a
- 4 totally independent decision about whether or not
- 5 something should go into labeling. That's not the
- 6 agency's policy about how to handle written requests,
- 7 which are generally provided, as I say, to reward
- 8 companies that do provide useful data.
- 9 DR. VENITZ: Then why don't we move forward
- 10 with the vote on number 7?
- DR. KAUL: Yes. Dr. Rich, unless you have
- 12 something --
- DR. RICH: I thought they did fulfill the
- 14 written request to do a study in children. You're
- 15 telling us no, they didn't fulfill it? How did they
- 16 miss?
- 17 DR. STOCKBRIDGE: There is a term in the
- 18 current written request that has to do with the sample
- 19 size that the existing program did not meet.
- 20 DR. MCGURE: And added to that is it was
- 21 designed, as I recollect, to have 75 percent with
- 22 primary endpoint data. There's 75 percent with

```
1 exercise testing data and only had 50 percent. So
```

- 2 it's a study that, as it was executed, it was we were
- 3 aware that it was going to be terribly underpowered
- 4 based on the primary assumptions.
- 5 DR. KAUL: Dr. D'Agostino?
- 6 DR. D'AGOSTINO: I was going to add
- 7 something on this effect that we're talking about if
- 8 we say yes to this, then they analyze it on all the
- 9 data, right, on all the subjects? Do they have the
- 10 data on all the subjects, this PVRI? I mean, they
- 11 don't have the exercise on all.
- DR. STOCKBRIDGE: They certainly don't have
- 13 exercise on everybody. Does the company want to
- 14 comment on who has hemodynamic data?
- DR. EWEN: Yes, we have hemodynamic on all
- 16 the age groups.
- DR. D'AGOSTINO: On all the age groups.
- DR. KAUL: Please identify yourself.
- 19 DR. EWEN: I'm Colin Ewen from Pfizer.
- 20 DR. KAUL: Yes, I think we should proceed to
- 21 question number 7, which is a voting question.
- DR. NEWMAN: Can I ask a question first? If

```
1 we vote to amend the written request and the sponsor
```

- 2 then is allowed to reanalyze the data based on that
- 3 and the FDA hasn't specified a PVR change, then does
- 4 allow every company to go back retrospectively and
- 5 reanalyze their data in studies that might have been
- 6 denied where PVR was within the threshold, but the
- 7 exercise data wasn't, and then reapply for FDA
- 8 approval for that drug?
- 9 DR. STOCKBRIDGE: It's an interesting
- 10 question, but there isn't anybody in that state.
- DR. KAUL: If the FDA acts on this, you can
- 12 be sure there will be many lining up.
- DR. PACKER: Sanjay, if I understand it, the
- 14 written request only deals with whether the company
- 15 gets pediatric exclusivity or not. It has nothing to
- 16 do with whether there is an approval for the
- 17 indication, and the distinction is really quite
- 18 important.
- DR. VENITZ: That's why I'm proposing that
- 20 we vote on number 7 and then go back to number 6.
- DR. KAUL: I think I'll take the suggestion.
- Dr. Kawut, unless you have really something

- 1 compelling, we'd like to go ahead.
- DR. KAWUT: I guess I'm confused. The only
- 3 way to amend the written request is by changing the
- 4 primary endpoint; is that correct?
- 5 DR. STOCKBRIDGE: No. In principle, the
- 6 written request could say almost anything. It could
- 7 say as long as you have a trial in which you collected
- 8 X, Y and Z in as many as 26 patients, it can say
- 9 anything we wanted it to say.
- 10 DR. BLACK: Sanjay, I'm not sure I
- 11 understand this yet. So rather than abstain, I wish
- 12 we could get another run-through of exactly what the
- 13 differences are. If we vote yes, they can amend it,
- 14 what does that mean? And if we vote no, they can't,
- 15 what does that mean? And I guess I ought to ask Bob
- 16 and Norman to explain that.
- DR. KAUL: Who wants to take that?
- Dr. Temple?
- DR. TEMPLE: I distracted Norman. Could you
- 20 repeat it, Henry?
- 21 DR. KAUL: Dr. Black, please repeat the
- 22 question.

```
1 DR. BLACK: Yes, I'm really still not sure
```

- 2 what the implications of the differences are if we
- 3 were to vote yes or no right now. So what is the
- 4 immediate and what is the long-term implication if
- 5 they're not allowed to amend it or if they are?
- DR. TEMPLE: For them to get six months of
- 7 exclusivity, it has to be amended. As Milton said,
- 8 that was exactly right. It has nothing to do with
- 9 whether we would utilize the data to change the
- 10 labeling, although some people would say it's a little
- 11 unfair if we thought the study was good enough to use
- 12 for that purpose, that they not get their exclusivity.
- 13 But don't worry about that.
- 14 This was intended to be a question about the
- 15 data. Is what we've seen about the hemodynamics
- 16 persuasive enough to say that that could be
- 17 incorporated into considerations? But I have a little
- 18 piece of view that we sort of have to reach our
- 19 conclusion on that by ourselves after looking at the
- 20 data before we really decide that. So I'm a little
- 21 wondering whether we should even do this vote.
- Where are you on that, Norm?

```
DR. KAUL: Actually, that is a good
```

- 2 suggestion.
- 3 Dr. Veltri?
- 4 DR. VELTRI: Would it be simple enough to
- 5 say to amend the written request but just to -- I
- 6 mean, they collected hemodynamic data, right? That
- 7 this would be an exploratory analysis, PVRI, because
- 8 the hemodynamic data was collected and that this would
- 9 be an exploratory analysis -- it has nothing to do
- 10 with changing endpoints or what have you -- which
- 11 would be analyzed. Wouldn't that suffice?
- 12 DR. TEMPLE: We would have to conclude that
- 13 those data made it okay not to have met the terms of
- 14 the written request. And we don't do that lightly.
- 15 We like to have our written request taken seriously
- 16 and everybody stick to them. That's the whole point.
- 17 DR. KAUL: I think the dilemma here is that
- 18 we really cannot seriously answer this question
- 19 without divorcing ourselves from the preceding
- 20 question.
- DR. TEMPLE: The one thing you do know, I
- 22 mean, you voted seven-six, to think that the

- 1 hemodynamic data could actually, conceivably, by
- 2 itself, be a basis for granting -- this was a mixed
- 3 view, obviously -- that the hemodynamic data alone
- 4 could be the basis for approving a drug for 2-year-
- 5 olds. That could mean that the hemodynamic data are
- 6 very valuable and should help us interpret stuff. You
- 7 might also think, though, that before you apply that
- 8 to this study, which involves older people, maybe the
- 9 data should be looked. And I think we'll live with
- 10 whatever you want to do.
- DR. KAUL: Let me make a proposal. The
- 12 numerical translation of the split vote may give the
- 13 appearance of a lack of consensus. But I don't see it
- 14 that way. I see there is a consensus. There is
- 15 information that is available. Some are more
- 16 enthusiastic that that information is actionable, and
- 17 others are less enthusiastic whether that information
- 18 is actionable. So my proposal to the FDA, with or
- 19 without the cooperation of the sponsor, is to work on
- 20 that information, refine it and see if it's
- 21 actionable. If it is actionable, I think you have the
- 22 answer to your vote 7.

```
I don't see really a lack of consensus in
```

- 2 the vote. That's what I don't like about the votes.
- 3 I don't like them, but we have to vote. But I think
- 4 it's the deliberation around the vote.
- 5 DR. STOCKBRIDGE: Well, you don't have to
- 6 vote. I suppose if I really had my choice, I'd never
- 7 ask you to vote. Well, look, because there are --
- 8 DR. KAUL: Was that specifically directed
- 9 towards me or --
- 10 [Laughter.]
- DR. STOCKBRIDGE: No, it's because there are
- 12 always issues that we don't bring you that affect the
- 13 approval decision. We don't ask you whether or not
- 14 you think the site where they're manufacturing this is
- 15 sufficiently developed. There are always issues that
- 16 are outside of your view. And if we discuss a little
- 17 bit further sort of what it is people would like us to
- 18 have looked at before we made a decision about things,
- 19 that'd be just fine. So the vote matters, rarely
- 20 matters much and doesn't matter much at all here,
- 21 certainly.
- 22 But again, having people clarify -- several

- 1 people have said useful things. I'd like to see the
- 2 effect on this endpoint by dropping studies one at a
- 3 time. Okay. Well, we can do that. People should try
- 4 to develop what other things might be useful to know
- 5 about the sponsor's data or about the endpoint that
- 6 you think would help us make a decision.
- 7 DR. BLACK: I just want to support what you
- 8 said about there probably being more consensus than
- 9 was obvious from a seven to six vote. My problem as a
- 10 no voter was that I just didn't think I had enough
- 11 assurance and that with further work which has been
- 12 suggested -- I think what was done is very good, but I
- 13 think further work, I would be much more able to make
- 14 a reliable yes or no vote.
- DR. TEMPLE: I think we heard it that way.
- 16 I actually want to say that at least in a lot of
- 17 cases, the vote sort of forces people to cut on
- 18 certain issues and you get some of these nuanced
- 19 discussions at the time of a vote, whereas sort of
- 20 people duck it a little beforehand. So I'm not quite
- 21 as negative as Norman is about votes, but I agree.
- 22 Those votes were not nearly as different as yes and no

- 1 votes, absolutely.
- DR. KAUL: Exactly. So with that, unless
- 3 anybody else has any specific comment or question, I
- 4 would like to adjourn the meeting. And I hope that
- 5 the FDA got the answers it was seeking. I'd like to
- 6 thank the sponsors for a very excellent and clear
- 7 presentations and the advisory committee members for
- 8 their very thoughtful deliberation.
- 9 Dr. Rosenthal, do you have a comment?
- DR. ROSENTHAL: I'd just like to make one
- 11 comment on behalf of the -- sorry to stick in an extra
- 12 comment as we're adjourning, but I'd just like to let
- 13 everyone know that the Pediatric Advisory Committee
- 14 would love to participate in these discussions. And I
- 15 know that others were invited. I'm sorry that I was
- 16 the only token pediatric person on the panel, but I
- 17 think the extent to which the Pediatric Advisory
- 18 Committee and the Office of Pediatric Therapeutics can
- 19 be involved in these discussions around written
- 20 requests and approval in kids, it can only help the
- 21 process.
- 22 There's a rich resource there, and I would

```
encourage that it be taken advantage of to the fullest
1
     extent. Thank you very much.
 2
 3
               DR. KAUL: Thank you, Dr. Rosenthal.
               The committee stands adjourned.
 4
               (Whereupon, at 4:12 p.m., the meeting was
 5
 6
     adjourned.)
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
```